
www.manaraa.com

www.manaraa.com

 تسى الله انشحًٍ انشحٛى

غضج –انجايعح الإسلايٛح

 عًادج انذساساخ انعهٛا

 كهٛح ذكُٕنٕجٛا انًعهٕياخ

 Islamic University – Gaza

Deanery of Graduate Studies

Faculty of Information Technology

An Ontology-Based Approach for Detecting

SOAP Message Attacks

Submitted By

Mahmoud A.K. Hamouda

Dr. Rebhi S. Baraka

Supervisor

January 2016 - Rabi' Thani 1437

A Thesis Submitted as Partial Fulfillment of the Requirements for the Degree of

Master in Information Technology

www.manaraa.com

www.manaraa.com

1

Acknowledgements

First, I thank Allah for giving me strength and ability to complete this study.

I also would like to express deepest gratitude to my advisor Dr. Rebhi S. Baraka for his full

support, expert guidance, understanding and encouragement throughout my study and research.

Without his incredible patience and timely wisdom and counsel, my thesis work would have

been frustrating and overwhelming pursuit. In addition, I would like to express my appreciation

to Deanery of Graduate Studies staff of the Faculty of Information Technology in the Islamic

University of Gaza.

I also thank my colleagues at the college of Information Technology for their inspiring and

fruitful discussion and suggestion. A special thanks goes to my college Mr. Mahmoud A. El-

Askary for his valuable technical helps.

Finally, I should extends a special thank for my parent, my brother, and my wife for their

unconditional love and support during my study. I would not have been able to complete this

thesis without their continuous support, love, and encouragement.

www.manaraa.com

2

Abstract

Web Services is a distributed communication technology that can implement Service Oriented

Architecture (SOA) to support the requirement of business process integration. Simple Object

Access Protocol (SOAP) is a lightweight protocol that standardized a framework for web service

communications. Messages written in SOAP are susceptible to different kinds of security attacks

negatively affecting the integrity, confidentiality and efficiency of the SOAP message and the

related Web Services.

In this thesis, we intend to build an ontology-based detection approach aiming to check SOAP

message Web Services attacks and in certain cases detect the tampered messages. The approach

consists of two main parts: the predefined ontology SOAP message part, which aim to preserve

the SOAP message structure, by capturing the SOAP elements, and defines the relationship

between these elements, this part of the approach is responsible for detecting and preventing

XML rewriting attacks. The second part consist of the policy filters, these policy filters check if

the SOAP Message comply to some requirements, which determine if the SOAP message

violates some restriction rules that might lead to considering the SOAP message as vulnerable to

Denial of Services attack.

In our approach we preserve integrity using ontology checker which checks that the SOAP

message has not been modified during the transmission process. The confidentiality is preserved

by encrypting a copy of the SOAP message in a log file. Finally we achieve time efficiency by

executing the policy filters in a concurrent manner. The results show a33 times speed up of the

concurrent execution of the policy filters over the sequential execution.

Keywords: Web Services, SOAP message, XML Rewriting attacks, WS-Security, Replay Attack,

Coercive-parsing attack, oversized attack, and parameter tampering attack.

www.manaraa.com

3

Acknowledgements

First, I thank Allah for giving me strength and ability to complete this study.

I also would like to express deepest gratitude to my advisor Dr. Rebhi S. Baraka

for his full support, expert guidance, understanding and encouragement throughout

my study and research. Without his incredible patience and timely wisdom and

counsel, my thesis work would have been frustrating and overwhelming pursuit. In

addition, I would like to express my appreciation to Deanery of Graduate Studies

staff of the Faculty of Information Technology in the Islamic University of Gaza.

I also thank my colleagues at the college of Information Technology for their

inspiring and fruitful discussion and suggestion. A special thanks goes to my

college Mr. Mahmoud A. El-Askary for his valuable technical helps.

Finally, I should extends a special thank for my parent, my brother, and my wife

for their unconditional love and support during my study. I would not have been

able to complete this thesis without their continuous support, love, and

encouragement.

www.manaraa.com

4

 عنوان البحث
 SOAPعتمد على الانتولوجيا في كشف هجمات رسائل ت طريقة

 الملخص:
انٕٚة انًُظٕيح الاكثش شٓشج نلاذصالاخ انًٕصعح ٔانرٙ تذٔسْا ذحقق يفٕٓو انثُٛح انًٕجٓح خذياخ عرثش ذ

، حٛث ذذعى انًرطهثاخ انخاصح تانًؤسساخ يٍ حٛث (Service Oriented Architecture) نهخذياخ

اذصالاخ تشٔذٕكٕل عثاسج عٍ SOAPتشٔذٕكٕل ذحقٛق انركايهٛح تٍٛ اجضائٓا ٔاجضاء يُظًاخ اخشٖ.

عشضح لإَٔاع يخرهفح يٍ عادج ذكٌٕ SOAP انٕٚة. سسائمٚسرخذو فٙ اسسال انشسائم تٍٛ خذياخ خفٛف

 ٔسشٚح ٔكفاءج خذياخ انٕٚة راخ انصهح. انٓجًاخ الايُٛح انرٙ ذسرٓذف سلايح

(نكشف انٓجًاخ الايُٛح انرٙ ontologyطشٚقح ذعرًذ عهٗ الاَرٕنٕجٛا)انٗ تُاء انذساسح ذٓذفْزِ

. انطشٚقح ذركٌٕ يٍ جضئٍٛ سئٛسٍٛٛ ًْا الاَرٕنٕجٛا انًعشفح يسثقا تُاءا عهٗ SOAPذرعشض نٓا سسائم

نهًرطهثاخ ٔانقٕٛد انرٙ SOAP(انرٙ ذرأكذ يٍ ذحقٛق سسانح filters، ٔانًششحاخ)SOAPذشكٛة سسانح

 (.denial of serviceذعًم عهٗ حًاٚرٓا يٍ ْجًاخ حشياٌ انخذيح)

ٔذصُٛفٓا كعُاصش نلاَرٕنٕجٛا ٔذحذٚذ SOAPانجضء الأٔل ٚقٕو ترحذٚذ انعُاصش الاساسٛح فٙ سسانح

نشسانح، فًٛا ٚعشف تاسى اعادج ذشذٛة أ ذشكٛة سسانح انعلاقاخ فًٛا تُٛٓا تٓذف كشف أ٘ ذعذٚم عهٗ ا

SOAP (XML rewriting attacks(يٍ خلال ياٚعشف تفاحص الاَرٕنٕجٛا ،)ontology checker)

ٔاَّ نى ٚرى أ٘ ذعذٚم تٓذف ذخشٚثٙ نٓا خلال عًهٛح الاذصال. SOAPتحٛث ٚرى انرأكذ يٍ ذشكٛة سسانح

(حٛث ذقٕو يجًٕعح يرٕاصٚح يٍ انًششحاخ تفحص خهٕ انشسانح يٍ filtersانجضء انثاَٙ ْٕٔ انًششحاخ)

 (.denial of serviceانٓجًاخ انرٙ ذرعهق تانحشياٌ انخذيح)

يٍ خلال طشٚقرُا ٚرى انرحقق يٍ حفظ سلايح انشسانح تاسرخذاو فاحص الاَرٕنٕجٛا انز٘ ٚفحص انشسانح ضذ

نهشسانح نٛسد يعادٚح. ايا سشٚح انشسانح فٛرى انرحقق يُٓا ا٘ ذعذٚم خلال َقهٓا ٔاٌ انًرغٛشاخ انرٙ حذثد

أيا سشعح انفحص فرى انرحسٍٛ عهٛٓا يٍ (.log fileسجم) يٍ خلال الاعرًاد عهٗ ذخضٍٚ َسخح يشفشج فٙ

ك لاَعذاو الاعرًادٚح فًٛا تُٛٓى. أثثد انُرائج أٌ ذُفٛز خلال ذُفٛز فحٕصاخ انًششحاخ تشكم يرٕاص٘ ٔرن

 يشج يٍ ذُفٛز انفحص عهٗ انرٕانٙ. 33حاخ عهٗ انرٕاص٘ أسشع ب فحص انًشش

www.manaraa.com

5

Contents
Abstract .. 2

 Introduction ... 11 Chapter 1

1.1. Statement of the Problem .. 12

1.2. The Objectives .. 12

1.2.1. Main Objective .. 12

1.2.2. Specific Objectives .. 12

1.3. Importance of the Thesis ... 12

1.4. Scope and Limitations of Thesis ... 13

1.5. Methodology ... 13

1.6. Thesis Format ... 14

 Technical Foundation ... 15 Chapter 2

2.1. Overview of Web Services ... 15

2.2. SOAP message .. 16

2.3. Web Services attacks .. 18

2.4. Ontology .. 19

2.1.1. Reasoning ... 21

2.5. Ontology Development Processes ... 21

2.6. Policies ... 24

2.7. Document Object Model (DOM) .. 25

2.8. SOAP with Attachment API for Java (SAAJ) ... 26

2.9. XML Path Language (XPath) ... 27

2.10. Apache Jena (Jena Framework) ... 28

2.10.1 Jena Architecture: .. 28

2.11. Log File .. 31

2.11.1 Log4j has three main components: ... 31

2.11.2 Log4j Features ... 31

2.11.3 Pros and Cons of Logging .. 32

2.12. Summary ... 32

 Related Works ... 34 Chapter 3

3.1. XML Rewriting Approaches ... 34

www.manaraa.com

6

3.1.1. Inline Approaches ... 34

3.1.2. Policy Approaches ... 35

3.1.3. Other Approaches ... 36

3.2. Denial of Services Approaches .. 37

3.2.1. Oversized Payload Approaches ... 37

3.2.2. Parameter Approaches ... 38

3.2.3. Coercive-Parsing Approaches.. 38

3.2.4. Replay Approaches ... 39

3.3. Overcoming Limitations .. 39

3.3.1. First XML Rewriting attacks Overcoming limitations 39

3.3.2. Second Denial of Services (DOS) Overcoming Limitations 40

3.4. Summary ... 40

 The Proposed Approach for Detecting SOAP Message Attacks 42 Chapter 4

4.1. Overall Structure of the Approach ... 42

2.4. The Ontology based on Predefined SOAP message Structure 46

4.3. Policies determination .. 53

4.3.1. Oversized filter .. 54

4.3.2. Message Replay Filter... 54

4.3.3. Parameter Tampering Filter .. 55

4.3.4. Coercive Parsing Filter ... 55

4.4. Summary and Discussion .. 56

 Implementation ... 57 Chapter 5

5.1. SOAP message Creation .. 57

5.2. Building Log File .. 60

5.3. SOAP-Message Ontology Structure Implementation ... 62

5.3.1. Define Important Terms (Class Hierarchy) ... 62

5.3.2. Define Slots and Facets ... 64

5.4. Detecting XML Rewriting Attacks in SOAP Message Using Ontology Checker ... 67

5.5. Policy Filters Implementation ... 69

5.5.1. Oversized Filter ... 70

5.5.2. Replay Attack Filter ... 70

5.5.3. Parameter Tampering Filter .. 70

www.manaraa.com

7

5.5.4. Coercive Parsing Filter ... 71

5.6. Summary ... 72

 Experimentation and Evaluation... 73 Chapter 6

6.1. Experimentation and testing cases.. 73

6.1.1. Checking Non-modified SOAP message ... 73

6.1.2. Checking the approach against XML Rewriting attack 74

6.1.3. Checking the Approach against Replay Attack ... 75

6.1.4. Checking the approach against Oversized attack .. 75

6.1.5. Checking the approach against Parameter Tampering attack......................... 76

6.1.6. Checking the approach against Coercive-Parsing attack 76

6.2. Evaluation ... 77

6.2.1. Integrity ... 77

6.2.2. Confidentiality ... 77

6.2.3. Time efficiency .. 79

6.3. Summary ... 80

 Conclusion and Recommendations ... 81 Chapter 7

7.1. Conclusion ... 81

7.2. Recommendation .. 81

Bibliography .. 82

Appendixes... 86

Appendix 1: The SOAP Structure Ontology in OWL Format: .. 86

Appendix 2: SOAP Creation Code .. 90

Appendix 3: Policy Filters Code .. 93

Appendix 4: The Ontology Checker Code .. 97

www.manaraa.com

8

List of Figures
Figure 2.1Web Services Architecture [5] ... 16

Figure 2.2 XML tree representation for the SOAP message [5] ... 17

Figure 2.3 SOAP message Structure ... 17

Figure 2.4 Class Definition in OWL ... 20

Figure 2.5 Ontology Development Processes [16] ... 23

Figure 2.6 An example of WS-Policy ... 24

Figure 2.7 Create SOAPConnection using SAAJ API ... 26

Figure 2.8 An example of XPath Language.. 27

Figure 2.9 An Example of Jena Apache ... 28

Figure 2.10 Jena Architecture ... 29

Figure 2.11 An Example of creating a triple in Graph Layer ... 29

Figure 2.12 Creating a Triple in Model Layer .. 30

Figure 4.1 Structure of the adaptable ontology-based approach... 43

Figure 4.2 Structure of the SOAP message using Ontology ... 44

Figure 4.3 Ontology Checker procedure (flow Chart) .. 45

Figure 4.4 Filters procedure .. 46

Figure 4.5 Ontology Individuals ... 51

Figure 4.6 SPARQL for Calling Envelope element child... 52

Figure 4.7 Envelope SPARQL .. 52

Figure 4.8 the SPARQL of Return the Timestamp child elements... 53

Figure 4.9 SPARQL of the Timestamp child elements .. 53

Figure 4.10 Oversized filter Algorithm .. 54

Figure 4.11 The Algorithm of Message Replay Filter .. 54

Figure 4.12 The Algorithm of Parameter Tampering Filter ... 55

Figure 4.13 The Algorithm of the Coercive Parsing Filter ... 55

Figure 5.1 SOAP Message Element in SAAJ ... 58

Figure 5.2 SOAP message Creation and Connection ... 58

Figure 5.3create SOAP Part elements ... 59

Figure 5.4 SOAP Header Elements create .. 59

Figure 5.5 Create the Attachment Part .. 60

Figure 5.6 file of properties .. 60

Figure 5.7 The layout of the Log file .. 60

Figure 5.8 Capture SOAP Structure.. 61

Figure 5.9 An Example of Log File .. 62

Figure 5.10 Log File Logging Event... 62

Figure 5.11 The SOAP message Ontology Structure ... 62

Figure 5.12 SOAP message Ontology Structure Properties ... 64

Figure 5.13 parentOf Properties Example .. 65

Figure 5.14 childOf Properties Example .. 65

Figure 5.15 hasNode Property .. 66

Figure 5.16 unique property .. 66

Figure 5.17 isExist Property ... 67

file:///D:/thesis/thesis%20v7.docx%23_Toc440699098
file:///D:/thesis/thesis%20v7.docx%23_Toc440699100
file:///D:/thesis/thesis%20v7.docx%23_Toc440699101
file:///D:/thesis/thesis%20v7.docx%23_Toc440699102
file:///D:/thesis/thesis%20v7.docx%23_Toc440699103
file:///D:/thesis/thesis%20v7.docx%23_Toc440699104
file:///D:/thesis/thesis%20v7.docx%23_Toc440699105
file:///D:/thesis/thesis%20v7.docx%23_Toc440699106
file:///D:/thesis/thesis%20v7.docx%23_Toc440699111
file:///D:/thesis/thesis%20v7.docx%23_Toc440699112
file:///D:/thesis/thesis%20v7.docx%23_Toc440699113
file:///D:/thesis/thesis%20v7.docx%23_Toc440699114
file:///D:/thesis/thesis%20v7.docx%23_Toc440699116
file:///D:/thesis/thesis%20v7.docx%23_Toc440699117
file:///D:/thesis/thesis%20v7.docx%23_Toc440699118
file:///D:/thesis/thesis%20v7.docx%23_Toc440699119
file:///D:/thesis/thesis%20v7.docx%23_Toc440699120
file:///D:/thesis/thesis%20v7.docx%23_Toc440699121
file:///D:/thesis/thesis%20v7.docx%23_Toc440699122
file:///D:/thesis/thesis%20v7.docx%23_Toc440699124
file:///D:/thesis/thesis%20v7.docx%23_Toc440699125
file:///D:/thesis/thesis%20v7.docx%23_Toc440699126
file:///D:/thesis/thesis%20v7.docx%23_Toc440699127
file:///D:/thesis/thesis%20v7.docx%23_Toc440699128
file:///D:/thesis/thesis%20v7.docx%23_Toc440699129
file:///D:/thesis/thesis%20v7.docx%23_Toc440699130

www.manaraa.com

9

Figure 5.18 Prepare SOAP Message ... 67

Figure 5.19 Return All Elements based on Ontology ... 68

Figure 5.20 Return Envelope Sub-elements ... 68

Figure 5.21 Return Header sub-Elements ... 68

Figure 5.22 Return Timestamps sub-elements .. 68

Figure 5.23 Return received SOAP message elements ... 69

Figure 5.24 Return Envelope sub-elements received SOAP message .. 69

Figure 5.25 The Oversized Filter .. 70

Figure 5.26 The Message Replay Attack .. 70

Figure 5.27 The Parameter Tampering Filters .. 71

Figure 5.28 Coercive Parsing Filter .. 71

Figure 6.1 SOAP message without any Modification .. 73

Figure 6.2 Normal Case Result ... 74

Figure 6.3 Malicious SOAP message modification structure ... 74

Figure 6.4 Time-Stamp Modification Recognize ... 74

Figure 6.5 An Old SOAP message ... 75

Figure 6.6 Replay attack ... 75

Figure 6.7 Oversized Attack ... 76

Figure 6.8 Parameter Type Test .. 76

Figure 6.9 Coercive Parsing Attack .. 77

Figure 6.10 Coercive Parsing checking Result ... 77

Figure 6.11 concurrent procedure for filters checking process ... 80

Figure 6.12 non-concurrent procedure for filters checking process ... 80

file:///D:/thesis/thesis%20v7.docx%23_Toc440699137
file:///D:/thesis/thesis%20v7.docx%23_Toc440699138
file:///D:/thesis/thesis%20v7.docx%23_Toc440699139
file:///D:/thesis/thesis%20v7.docx%23_Toc440699140
file:///D:/thesis/thesis%20v7.docx%23_Toc440699141
file:///D:/thesis/thesis%20v7.docx%23_Toc440699142
file:///D:/thesis/thesis%20v7.docx%23_Toc440699143
file:///D:/thesis/thesis%20v7.docx%23_Toc440699144
file:///D:/thesis/thesis%20v7.docx%23_Toc440699145
file:///D:/thesis/thesis%20v7.docx%23_Toc440699146
file:///D:/thesis/thesis%20v7.docx%23_Toc440699147
file:///D:/thesis/thesis%20v7.docx%23_Toc440699148
file:///D:/thesis/thesis%20v7.docx%23_Toc440699149
file:///D:/thesis/thesis%20v7.docx%23_Toc440699150
file:///D:/thesis/thesis%20v7.docx%23_Toc440699152
file:///D:/thesis/thesis%20v7.docx%23_Toc440699156

www.manaraa.com

10

List of Tables
Table 4-1 Ontology Main Terms .. 48

Table 4-2 Ontology Object Properties .. 49

Table 4-3 Ontology Data Properties ... 50

www.manaraa.com

11

 Introduction Chapter 1

Web Services is a distributed systems where devices in the network exchange specific form of

XML document called Simple Object Access Protocol (SOAP) message. SOAP message allows

the existence of network intermediaries. An intermediary can be a routers or a firewall. SOAP

message allows these intermediaries to process the SOAP message, by adding or modifying

headers. Because of its simplicity, standardization and platform independent nature a lot of

business organizations have embraced Web Services technology for the integration of data,

system and application inside and outside their organization boundary such as Amazon and

Yahoo are using Web Services to integrate various applications. Due to this growing adoption by

different organization, security of Web Services became as a vital issue that slowing the

deployment, according to a new survey of senior IT executives sponsored by Computer

Associates [1]. One key finding in this survey was that 43% of the respondents felt that security

was the most significant issue related to the deployment of Web Services applications.

 The communication between Web Services occurs via SOAP messages. Thus, making Web

Services secure means making SOAP messages secure during the exchange of messages. Several

security standards such as WS-Security [2] are used to secure SOAP messages exchange in Web

Services environment. However, [3] demonstrated that the content of a SOAP messages, secured

with XML digital signature, could be changed without invalidating the digital signature. This is

so called XML rewriting attacks or XML Signature Wrapping attacks.

In this research, we intend to build an approach for detecting SOAP message attacks, which

depends on the ontology and the policy filters. The sender captures the SOAP message and

attaches it to the log file, encrypt the log file, attach the log file to the SOAP message, then send

the SOAP message to the Web Services provider.

First the predefined ontology checker checks the SOAP message and compare the element

position with the predefine ontology structure. If there is any modification, the ontology checker

clarify it, and see if it is a malicious intent or not. If the modification is not malicious the

ontology checker passed the SOAP message to the policy filters. Otherwise if the modification is

malicious, the ontology checker decrypt the SOAP message captured in the log file and

compares it also with the predefined SOAP ontology structure. If the log file SOAP has not any

structuring problem, the ontology checker modify the receiving message to become like the log

file SOAP message. Then sends it to the policy filters. Else, if the log file SOAP message version

suffering from malicious vulnerability the ontology checker rejects the SOAP message.

In addition the log file play an important role in registering each logging event that happens to

the SOAP message during the transmission process and displays it in a manner where machine

and human can read it, and specify which intermediate node modifies the SOAP message and

when the modification has happened.

www.manaraa.com

12

The policy filters focus in four SOAP message attacks namely, Replay attack, Oversized attack,

Parameter Tampering attack, and Coercive Parsing attack. Each filter has to handle one kind of

attack; also, they are working in parallel as multiple thread.

The rest of this chapter consists of the following sections. Section 1.2 presents the statement of

the problem. Section 1.3 presents the objectives of the thesis. Section 1.4 states the importance of

the research. Section 1.5 addresses the scope and limitations of the research. Section 1.5

illustrates the methodology. Finally, Section 1.6 outlines the research format.

1.1. Statement of the Problem

Protecting SOAP message from Web Services attacks is a crucial issue for the security of Web

Services. Existing approaches to this issue suffer from handling one kind of attack and ignore

other kinds and they tend to exhaust the resources of the services in the detection process.

The problem of this research is how to design an efficient approach for the detection of SOAP

message attacks in Web Services that preserves integrity and confidentiality.

1.2. The Objectives

1.2.1. Main Objective

To design a time efficient ontology-based approach for detecting SOAP message against Web

Services attacks which can detect multiple kinds of attacks while preserving integrity and

confidentiality.

1.2.2. Specific Objectives

The specific objectives of the thesis are:

 To analyze the different approaches used to protect SOAP messages and investigate the

limitations of each solution.

 Building the corresponding ontology for SOAP message structure and the appropriate

filters.

 To design the approach for detecting SOAP message attacks based on the ontology and the

filters.

 To implement the approach including the ontology checker and the concurrent policy filters

using suitable tools.

 To conduct the required experiments and evaluate the approach for preserving integrity and

confidentiality and ensuring time efficiency.

1.3. Importance of the Thesis

 The proposed approach depends on the ontology to guarantee integrity and confidentiality

for the SOAP message.

 It attempts to decrease the use of resources on the detection process by handling attacks

before it reaches the service.

www.manaraa.com

13

 The approach makes sure that the SOAP message is non-changeable (preserves integrity)

by capturing its structure using the ontology.

 It makes Web Services communication under SOAP messages more confidential.

1.4. Scope and Limitations of Thesis

 Our solution depends on ontology and filter polices.

 The approach focuses on detecting SOAP message attacks such as rewriting attack, replay

attack, coercive-parsing attack, oversized attack and parameter-tampering attack.

 Time efficiency is preserved using multiple thread technique in order to let the filters run

concurrently and reduce filtering time.

 Our approach will be at the middle between the service requester and the service provider.

 The approach consists of filters, and these filters are following specific policies such as the

message size and the timestamp element.

 Validation process is done before the SOAP message reaches the service.

 Cross-site scripting attack cannot be handled by our approach.

 Our approach depends on the ontology checker but the other policy filters do not depends

on ontology.

1.5. Methodology

We intend to accomplish this thesis by using the following methodology:

Phase 1: First, we investigate the Web Services attacks and there approaches, and try to conduct

each approach and infer its limitations.

Phase 2: Analyze the requirements of the approach.

 This phase is separated into four parts:

First, study the kinds of malicious attacks that manipulate the SOAP message.

Second, capture the structure of the SOAP message and add it as encrypted to the log file.

Third, develop the ontology that contain the predefined SOAP message structure, and the XML

rewriting attacks case.

Fourth, we create strict policy roles to control the attack attempt.

Phase 3: Design the detection SOAP message attacks approach.

 In this phase, we mainly design the ontology and policy filters:

Design the ontology to define the main elements that must exist in the SOAP message. The XML

rewriting attacks kind are also registered as cases, and the log file for capturing the SOAP

message structure and the log file for registering every modification that happened to the SOAP

message through the transmitting process.

www.manaraa.com

14

Design oversized filter, this filter aims to validate the SOAP message and make sure that it

follows the policies to avoid Web Services attacks such as buffer over-flow. Design message

replay filter, this filter compare the message timestamp to its current clock time value for

synchronization. Design parameter tampering filter, this filter checks the SOAP message

parameter for invalid data. Design coercive parsing filter, this filter verifies the received message

for wrong format.

Phase 4: Implement the approach based on Phase 2 and Phase 3 using suitable tools and

platform.

Phase 5: Conduct the necessary experiments on the detection of SOAP message attacks

approach to make sure that it solves the problem.

Phase 6: Evaluate the approach to ensure that it preserves time consuming, integrity and

confidentiality of the SOAP messages.

1.6. Thesis Format

The rest of the thesis is organized as follows: Chapter 2 presents technical foundation, Chapter 3

reviews related works; Chapter 4 presents the proposed approach, Chapter 5 details the

implementation of the proposed approach, Chapter 6 explains the experiments, testing and

evaluation the approach, and finally Chapter 7 present conclusion and future work.

www.manaraa.com

15

 Technical Foundation Chapter 2

In this Chapter, we aim to present the technical foundation the proposed approach depending on

to achieve the security goals we aim to. Firstly, we define the terminology such as Web Services,

SOAP message.

Then we identify Web Services attacks. Which our approach, detect and handle. In addition, we

discuss the ontology terminology because the approach depends heavily on ontology to check the

SOAP message structure. Therefore, we identify the development steps of the ontology build.

Moreover we review uses policies and finally we give an overview about it.

Also we present the main APIs the proposed approach used in the implementation process. At

the first we introduce the Document Object Model (DOM) API. Then we present the SOAP with

Attachment API for Java (SAAJ), which is an API for creating and manipulating SOAP message.

After that we give a brief introduction about the XML Path Language (XPath), and how to use it.

Then we discuss Apache Jena or Jena API for extracting data from and write to RDF graphs, also

we present its architecture. Finally we present the Logging strategy, and take the Log4j Apache

as an example.

2.1. Overview of Web Services

The World Wide Web consortium (W3C) defines Web Services as follows [4]: "a Web Services

is a software system identified by a Uniform Resource Identifier (URI), whose public interfaces

and bindings are defined and described using Extensible Markup Language (XML)".

In particular the use of Web Services depends on components. Services provider which offer the

services operation, using Web Service Description Language (WSDL). This language describe

the functionality requirement to use this services. Then the services provider publish this WSDL

in the Universal Description Discovery and Integration (UDDI). The services requester discover

the UDDI and consuming the appreciate services using Simple Object Access Protocol (SOAP)

message. This process is shown in Figure 2.1.

A Web Services is a service that has the following properties [4]:

- The service can be accessed over the Internet

- The service uses a standard XML messaging system. SOAP is a communication protocol

used for XML messaging.

- The service is not dependent on any particular operating system or programming

language

Although not absolutely necessary, Web Services can have the following two properties as well

 A Web Services have a description written in XML. WSDL (Web Services Description

Language) used for this.

www.manaraa.com

16

 A Web Services can be located using a find mechanism. UDDI is a standard to locate Web

Services.

Web Services provide a mechanism for machine-to-machine interaction. It is a way for

programmatic access to web sites. Unlike traditional client/server models, such as a Web

Server/Web page system, Web Services do not provide the user with a GUI. Web Services

instead access business logic, data and processes through a programmatic interface across a

network.

Figure 2.1Web Services Architecture [5]

2.2. SOAP message

The communication between different Web Services occurs via the SOAP messages. SOAP 1.2

specification defines SOAP messages as follows [6]: "SOAP is a lightweight protocol intended

for exchanging structured information in a decentralized, distributed environment".

Simple Object Access Protocol (SOAP) depends as a base on the XML Technology, because of

that SOAP can exchange over variety of protocols. This advantages allow the SOAP to be

independent of any particular programming model, and other implementation specific semantics.

Figure 2.2 illustrates a sample XML tree representation for the SOAP message.

www.manaraa.com

17

Figure 2.2 XML tree representation for the SOAP message [5]

The structure of a SOAP message in a pictorial representation illustrated in Figure 2.3. A SOAP

message is encoded as an XML document. So SOAP message must has a root element, which is

called <Envelope> element. The <Envelope> element will contain the following sub elements as

its children.

Figure 2.3 SOAP message Structure [5]

- An optional <Header> Element

- A mandatory <Body> Element

A <Header> element will contain data that is not the application payload. This element is

intended to be processed by zero or more intermediaries along the path of the SOAP message

from sender to the receiver. <Header> element will contain zero or more <HeaderBlock> as its

child element. Each HeaderBlock within the <Header> element may realize zero or more

features. For instance, to realize the security feature, which is not specified by the core SOAP

www.manaraa.com

18

messaging framework, a <Security> header block will be used as the sub element of the

<Header>.

The <Body> element is mandatory and contains the application payload. The <Body> element is

always intended to be processed by the Ultimate Receiver of the SOAP message.

2.3. Web Services attacks

Web Services such any other environment suffer from vulnerability, in the following section we

discuss and describe the main five Web Services attacks that influent the security availability,

confidentiality and integrity.

- XML rewriting attacks

SOAP message is an XML-based document. One particular vulnerable case is that of a XML

rewriting attacks – XML wrapping attack – which is a general name for a distinct type of attacks

based on the malicious interception, manipulation, and transmission of SOAP messages in a

network of communication system. The main limitation in WS-Security [2], WS-Policy [7] and

other standards that they can`t exactly specify the real location of the element.

However, in practice, incorrect deployment of these standards especially by human being is very

likely, leading to significant vulnerable cases [4].

- Buffer overflow attack (over-sized attack)

"The attacker inserts malicious content with well-formed message in SOAP request, which is

beyond the allowable size of the buffer and causes Denial of Services Attack (DOS). It called

buffer overflow attack" [8].

- Message replay attack

"A message replay attack is one in which the attacker eavesdrops and obtains a copy of an

encrypted message and then reuses the message later in an attempt to reveal the secret message

or to provide a fake identify. For example, when a legitimate client transfers money from this

account in a bank to the receiver, the attacker steals the password and uses it multiple times by

sending it to the Web Services in order to cause money lose" [8].

- Parameter tampering attack

"The WSDL document has parameters to receive inputs from the client. The parameters are

visible in a WSDL structure to all users. Here, the attacker tries to send different data types of

parameters several times. Then, the Web Services may crash" [8].

- Coercive parsing attack

"The attacker sends a SOAP message with an ultimate amount of opening tags in the SOAP

body. It means the attacker sends a very deeply nested XML document into the targeted Web

Services. If the parser receives a peculiar format of SOAP message, it reduces the processing

capability and this may result in distributed denial of services attack" [8].

www.manaraa.com

19

2.4. Ontology

Ontology has become one of the main ways to represent data. It is used to support a great variety

of tasks. Nowadays there are applications of ontologies in commercial, industrial, academicals or

research focus depend on the ontological principle and structure.

In addition, ontology is used to connect people, organizations and software programs together.

Although if they used different viewpoints or environment. This divergence is natural and

valuable, but it leads to problems in communication, interaction and understanding. Ontologies

are an alternative to address these kind of problems. The main objective of this section is to give

a brief introduction about the ontology.

Here we introduce the specific objectives to make the reader have a general understanding of the

ontology power and ontology concept [9].

- To identify main characteristics of ontologies, their relevance and some of their

applications.

- To review tools and languages to support ontologies.

- To look over relevant research projects.

Any ontology design for a specific purpose must answer main and specific question, such as

what are ontologies? What are their characteristics?, what are they for?, how they address

semantically and interoperability problems?, what tools or languages support their management?,

how they have been used?.

To come over the ontology understand we want to introduce the main concept and explain it, and

focus on the main language that has been used in knowledge sharing and data integration in

conjunction with the semantic web activity [10]. So we will give a briefly discuss of the

DAML+OIL [9] and the present one OWL [11], these language are based on RDF triples and

support reasoning capability.

 Darpa Agent Markup Language (DAML) is an ontology language developed by the RDF Core

Working Group [12] in order to represent the ontology in a way more explicitly than XML, RDF,

and RDF Schema, the DAML+OIL is an extensional of the DAML, which combines DAML

with the Ontology Interface Layer (OIL) [9]. The DAML+OIL is consists of class elements,

property elements, and instances. Also, it can imports statement to reference another

DAML+OIL ontology. DAML+OIL divides the domain into data types and objects. This

ontology language supported the field at the time it was recommending, but could not keep up

with the growing need for more expressive ontologies because of the limited restriction and

concept support. Thus, OWL took the place of DAML + OIL as the semantic web standard.

The Ontology Web Language (OWL) developed after the DAML+OIL and it is the current W3C

standard for ontology languages and has been extended to provide more explicit description

logics. [13]. The OWL has added three increasing level of expressivity it is OWL Lite, OWL

DL, and OWL Full respectively. These advantages allow the user to define their own needs for

www.manaraa.com

20

expressivity and chose the best version that support their needs. The OWL syntax employs URIs

for naming and implements the description framework for the Web provided by RDF to add the

following capabilities to ontologies: the ability to be distributed across many systems, scalability

to Web needs, compatibility with Web standards for accessibility and internationalization, and

openness and extensibility [14].

Here we want to make a small compare between the DAML+OIL and the OWL. The OWL has

various updates to RDF and RDF Schema from the RDF Core Group [12]. The DAML+OIL

restrictions has removed, and various properties and classes has renamed in OWL syntax.

Examples of some of the differences in syntax can view in the sequence-analysis class definition

examples is in Figure 2.4 below. Note the difference in RDF tags and labels. In addition,

Owl:SymmetricProperty was added and DAML+OIL synonyms for RDF and RDF Schema

classes and properties were removed, as well as added properties and classes to support

versioning and unique names assumptions. The Ontology Web Language OWL employs the

most recent version of RDF Semantics, which thus replaces some semantic terms identified in

DAML+OIL. RDF and RDF Schema updates include: allowing cyclic subclasses, handling

multiple domain and range properties as intersections, changing namespaces, and implementing

XML Schema data types and new syntax for list functions [13].

The updates and changes that was added have made the OWL more expressive ontology

language standard.

OWL also support the distribution of the ontologies, which allow the semantics web to create

and share ontologies in distributed manner across the web. When creating an ontology for a

given use, it is most efficient and effective to rely on the expertise of others and previous models

in order to provide a more robust representation of a domain. Thus, the integration of distributed

ontologies becomes an important design implication [15]. Also, as the breadth and depth of the

individual ontology increases, the ability to manage the information contained within the

knowledge base also increases. Thus, the support of a distributed ontology system where

specialized ontologies can be maintained as separate entities becomes an attractive option [10].

 One advantage of a distributed ontology is that it can be collaboratively created and easily

maintained over time. Specialists in their field of expertise can gain access to a particular part of

the ontology in order to update and revise it as they see appropriate without interrupting the

integrity of the top-level system ontology [10]. The ability to collaborate with many different

- <owl:Class rdf:about="#SEQUENCE_ANALYSIS">

- <rdfs:subClassOf>

 <owl:Class rdf:about="#ANALYSIS" />

 </rdfs:subClassOf>

 </owl:Class>

Figure 2.4 Class Definition in OWL

http://mensa.sl.iupui.edu/ontology/TotalOnto4.owl##
http://mensa.sl.iupui.edu/ontology/TotalOnto4.owl##

www.manaraa.com

21

professionals adds to the depth and breadth of any ontology and will result in better reasoning

and query capabilities.

2.1.1. Reasoning

When we talk about the expressive representation of an ontology we must talk about the tool

available to infer information from the ontology. Many available Reasoners today exploit the

capabilities of Description Logics. According to Lambrix, description logics are knowledge

representation languages tailored for expressing knowledge about concepts and concept

hierarchies [14]. Ontology reasoning performed at two levels. On one level, a Reasoner

provides the basic core usability of ontology by testing for concept satisfiability, class

subsumption by concept hierarchy, class consistency, and instance checking [14]. Reasoners

also support first order logic whereby users can create rules and query expressions in order to

deduce answers from the knowledge base. The first order logic reasoning in description logics is

based on concepts, roles, and, individuals. Concepts relate to classes in ontology language, roles

are equivalent to relationships, and individuals found in both cases. As described, reasoners

allow the information contained within an ontology to be utilized to its fullest potential to

maintain and infer information. RacerPro is the description logics reasoner employed in this

project to ensure concept satisfiability and as a tool for advanced query formulation and

inference implementation.

2.5. Ontology Development Processes

Ontology is a formal specification of a shared conceptualization [18]. Ontology is a formal

explicit representation of concepts in a domain, properties of each concept describes

characteristics and attributes of the concept known as slots and constrains on these slots.

Ontology is a shared conceptualization with a clear hierarchy and a strong support for logical

consequences [18].

Ontology contains a set of specific and clearly described classes or concepts, property of the

concepts, slot, restriction, facet and a series of instance related to one class, which combines to

form the knowledge storage [19]. Class is the core of ontology, which describes the concepts in

some domain. Slot describes the property of the class and the instance.

In the process of development an ontology, there is some rule must be emphasize in the design of

the ontology. According to [16] the other things that need to considered are:

- There is exactly or right way to model a domain – there is always a suitable alternative the

best solution depends on the application to be developed and throughout and extension that

you anticipate and develop.

- Ontology development is a repetitive process.

- The concepts in the ontology should be close to the object (physical or logical) and

relationships in the domain that you study. Normally nouns (objects) or verbs (relationships)

in sentences will clarify and explain our domain.

www.manaraa.com

22

The general steps in the design and development of ontology are summarized in Figure 2.5 and as

follows:

Step 1: Determine the Domain and Scope of the Ontology

This step defines the purpose and boundaries of the ontology. That is, answer several basic

questions: what domain will the ontology cover? What is the purpose of the ontology? For what

sorts of questions should the information in the ontology be able to provide answers? [16].

The answers to these questions may change during the ontology-design process, but at any given

time, they help limit the scope of the model.

Step 2: Consider Reusing Existing Ontologies

This step is to ascertain if ontology has developed previously in the same subject area. If such

ontology exists, it is easier to modify the existing ontology to suit ones needs than to create a

new ontology [16]. Reusing existing ontology may be required if our system needs to interact

with other applications that have been committed to a specific ontology or controlled vocabulary.

www.manaraa.com

23

Figure 2.5 Ontology Development Processes [16]

Step 3: Enumerate the Important Terms in the Ontology

This step can viewed as a brainstorming activity [17] and it is useful if we could list all the words

that we want to use, either in the form of a statement or explanation to the user. The following

questions guide this brainstorming: What the terms would like to talk about? What properties do

those terms have? What needed to say about those terms?

Step 4: Define the Classes and the Class Hierarchy

There are several possible approaches in developing a class hierarchy [18]: a top-down

development process, which starts with the most general concepts and subsequent specialization

of the concepts. Bottom-up starts with the most specific concepts or classes, the leaves of the

hierarchy with subsequent grouping of these classes into more general concepts. Middle-out is a

combination of the top-down and bottom-up approaches starts with the salient concepts first and

then generalize and specialize them appropriately.

www.manaraa.com

24

Step 5: Define the Properties of Classes (Slots)

This step used to describe the attributes or properties of the classes. These properties defined as

the slots of the models [17]. Once the classes have been defined, the next step is to describe the

internal structures (properties) of the concepts. Again, these should be readily available from the

list produced because of Step 3 [16].

Step 6: Define the Facets of the Slots.

This step involves attaching facets to the properties, i.e., describing the value type, allowed

values, the number of allowed values (cardinality) and other features that are necessary. In this

way, constraints placed on the types of data that allowed.

Step 7: Create Instances

The last step allows the data to be entered and displayed. An instance (or individual) is the

information that entered into the knowledge base. To create an instance the following method

needs to be carried out:

- Choose a class.

- Create an instance and name instance after the source.

- Fill the slot values.

2.6. Policies

In this section we will talk about the policy concepts that we need in our study, we will talk

briefly about policy represented as a constrain on the SOAP message brief creation, these

constrains presented in our case as elements. Which help in the detection of multiple kind of

Web Services attack. As an example case, we will introduce the WS-Policy. WS-Policy is a

mechanisms needed to enable Web Services applications to specify their policies. It is an XML-

based structure to express the policy information. In addition, it contain Grammar elements to

indicate how the contained policy assertions apply. Figure 2.6 present an example of WS-Policy,

and how it`s look [7].

<wsp:Policy xmlns:wsp="..." xmlns:wsse="...">

 <wsse:SecurityToken wsp:Usage="wsp:Required">

<wsse:TokenType>wsse:Kerberosv5ST</wsse:TokenType>

 </wsse:SecurityToken>

 <wsse:Integrity wsp:Usage="wsp:Required">

 <wsse:Algorithm Type="wsse:AlgSignature“

 URI="http://www.w3.org/2000/09/xmlenc#aes" />

 </wsse:Integrity>

</wsp:Policy>

Figure 2.6 An example of WS-Policy

www.manaraa.com

25

To make it clearer we must classify the policy terminology in a manner to make it clearer. In the

following section, we will introduce the main terminology of the policy.

Policy: A collection of policy alternatives.

Policy Alternative: A collection of policy assertions.

Policy Assertion: An individual requirement, capability, other property, or a behavior.

Initiator: The role sending the initial message in a message exchange.

Recipient: The targeted role to process the initial message in a message exchange.

Security Binding: A set of properties that together provide enough information to secure a given

message exchange.

Security Binding Property: A particular aspect of securing an exchange of messages.

Security Binding Assertion: A policy assertion that identifies the type of security binding being

used to secure an exchange of messages.

Security Binding Property Assertion: A policy assertion that specifies a particular value for a

particular aspect of securing an exchange of message.

Assertion Parameter: An element of variability within a policy assertion.

Token Assertion: Describes a token requirement. Token assertions defined within a security

binding are used to satisfy protection requirements.

Supporting Token: A token used to provide additional claims.

Policy means that some required rule must be followed. In our approach we define some

restrictions on the SOAP message. Therefore some attacks can be avoided.

The main restrictions in our approach is the existing of creation time to enable the Replay filter

to check the time of the SOAP message, also the size of the message, one of the main important

element of the checking is the input parameter type the Web Services expected. Finally we check

the namespace of Envelope element to clearly specify the SOAP version.

Clearly we cannot use the WS-Policy. Because the Policy focus in the way to sign or

decrypt/encrypt the XML file, this kind of restrictions or assertions not needed in our approach to

save the processing time.

2.7. Document Object Model (DOM)

The Document Object Model (DOM) is a programing interface for HTML, XML and SVG

documents. It provides a structured representation of the document (a tree) and it defines a way

that the structure can be accessed and updated using programs and scripts. So that they can

https://www.w3.org/DOM/

www.manaraa.com

26

change the document structure, style and content. The DOM provides a representation of the

document as a structured group of nodes and objects that have properties and methods.

The DOM is a standard of the World Wide Web Consortium (W3C), it is used basically in

navigating the document as a tree manner. The DOM has its own interfaces for handling

documents. Many released has been published for the Document Object Model (DOM) the latest

version has released in April 2004.

The DOM support many technique such as event model, XML namespaces, CSS, XPath, jQuery,

JDOM, and AJAX.

2.8. SOAP with Attachment API for Java (SAAJ)

SAAJ message API follow SOAP Standard, which present a predefined some specification that

are required, optional, and not allowed in SOAP specification. Using the SAAJ you can create

and XML format conforming the SOAP 1.1 or SOAP 1.2 specification and the WS-I basic

profile 1.1 simply by making a Java calls.

SAAJ API have its build in classes and methods which allow us to create and manipulate the

SOAP message. These classes and methods handle the SOAP message object, for example the

SOAPEnvelope class used to create the Envelope in the SOAP message. Then we can instance

the SOAPHeader, and SOAPBody form the SOAPEnvelope object.

The SAAJ allow us to create two main kinds of SOAP message: SOAP message with

attachment, and SOAP message without an attachment. The difference between this two kinds is

creating the Attachment-part node. Also the SAAJ inherit the Node class from the org.w3c.dom

package. in real it is not the node class alone, it also inherit the SOAPElement interface from the

org.w3c.dom.Element interface, in addition the SAAJ implement the SOAPPart class form

org.w3c.dom.Document interface, furthermore it extends the Text interface from

org.w3c.dom.Text. This inheritances allow the SAAJ to implement the advantages of the DOM

(Document Object Model) advantages.

In the other hand the SAAJ make the creating of the SOAP connection easier depending on

SOAPConnection object, which is responsible for the sending and receiving of SOAP messages

using the call method. Figure 2.7 represented the way to create point-to-point connection using the

SOAPConnection. The connection using the SAAJ API also called request-response, because the

call method specify the endpoint for the SOAP message.

SOAPConnectionFactory factory = SOAPConnectionFactory.newInstance();

SOAPConnection connection = factory.createConnection();

//create a request message and give it content

java.net.URL endpoint = new URL("http://fabulous.com/gizmo/order");

SOAPMessage response = connection.call(request, endpoint);

Figure 2.7 Create SOAPConnection using SAAJ API

https://www.w3.org/
http://docs.oracle.com/javaee/5/tutorial/doc/bnbhg.html

www.manaraa.com

27

2.9. XML Path Language (XPath)

XPath is a language used for selecting parts of an XML document for subsequent processing.

The main important thing in XPath is an XPath expression which allow the user to describe, in a

formal way that a computer can process easily, certain parts of a document. In addition to

defining specific parts of a document, XPath can also manipulate the data it returns. Although

XPath used as a helper language, or ancillary technology, to identify parts of a document that

will be manipulated by other languages.

The use of XPath components (path expressions, predicates, and functions) depends on two key

concepts, node and sequences. A node is a piece of information in the XML tree, XPath define

seven types of nodes: element, attribute, text, namespace, processing-instruction, comment, and

document nodes. XPath define relationship of node under five relationships: parent, children,

sibling, ancestors, and descendants. The sequence is where this piece of information exist in the

XML tree.

The w3school define the XPath as:

 XPath is a syntax for defining parts of an XML document or tree.

 XPath uses path expression to navigate XML document.

 XPath contains a library of standard functions.

 XPath is a major element in XSLT.

 XPath is a W3C recommendation.

Path expression present the most important component of XPath language, XPath uses path

expressions to selects nodes or node-sets in an XML document. These path expressions look

very much like the expressions you see when work with a traditional computer file system.

Figure 2.8 illustrate an example of path expression.

Figure 2.8 show the way of using XPath language embedded to java code. First we create an

object of the class XPathFactory, and use this object to create new XPath, which use in

XPathExpression. Finally store the value in an object after process the XPathExpression using

the evaluate() method.

XPathFactory xPathfactory = XPathFactory.newInstance();

XPath xpath = xPathfactory.newXPath();

XPathExpression expr =

xpath.compile("/Envelope/Header/TimeStamp/expire/text()");

Object result = expr.evaluate(doc,XPathConstants.NODESET);

Figure 2.8 An example of XPath Language

http://www.w3schools.com/xsl/xpath_intro.asp

www.manaraa.com

28

Functions in XPath language. XPath includes over 100 built- in functions. There are functions

for string values, numeric values, date and time comparison, node and QName manipulation,

sequence manipulation, Boolean values, and more.

2.10. Apache Jena (Jena Framework)

Apache Jena (or Jena in short) is a free and open source Java framework for building semantic

web and Linked Data applications. The framework is composed of different APIs interacting

together to process RDF data. It provides an API to extract data from and write to RDF graphs.

The graphs are represented as an abstract "model". A model can be sourced with data from files,

databases, URLs or a combination of these. A Model can also be queried through SPARQL.

Figure 2.9 demonstrated an example of using the Apache Jena.

2.10.1 Jena Architecture:

According to the W3C recommendations, Jena API fully implements the RDF specification. It

does so in a well-designed manner depending on three main layers [19]: Figure 2.10 show the

structure of these layers.

FileManager.get().addLocatorClassLoader(Main.class.getClassLoader());

Model model = FileManager.get().loadModel("RDF/OWL file directory");

Reasoner reasoner = RDFSRuleReasonerFactory.theInstance().create(null);

InfModel inf = ModelFactory.createInfModel(reasoner, model);

Figure 2.9 An Example of Jena Apache

https://jena.apache.org/
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/SPARQL

www.manaraa.com

29

1. Graph Layer

The Graph layer is very granular and is a very minimal implementation of the RDF specification.

There are less methods available, and certain techniques such as reification, are not possible.

The Graph layer is really an SPI (Service Provider Interface); a description of

classes/interfaces/methods to implement and extend. The heart of the Jena2 architecture is the

Graph layer containing the RDF graph. This layer is minimal by design, possible functionality is

done in other layers. This permits a wide range of implementations of this layer, such as in-

memory or persistent triple stores. The EnhGraph layer is the extension point on which to build

APIs. Within Jena2, the functionality offered by the EnhGraph layer is used to implement the

Jena Model API and the new Ontology functionality for OWL and RDFS.

By separating the Graph layer from the Model layer, the Jena development team has made it very

easy to extend the base Jena functionality. So, if you want to extend the Jena API, or use the Jena

API in your own product, then you extend the Graph interfaces. For example, DB2-RDF support

in DB2 Galileo extends the Jena Graph layer. And once you do that, you'll end up with

something resembling the Model layer. The Model layer is simply the official Jena extension of

the Graph layer.

Now if you're a developer, and you're working with the Jena, using either in-memory datasets or

a TDB-backed dataset, you'll typically be working at the Model layer. There's really no reason

to work with the Graph layer on a day-to-day basis. No benefits in terms of performance or

convenience.

Figure 2.11 illustrates creating process of a triple in the graph layer:

Node s = Node.createURI("Rational Software Architect");

Node p = Node.createURI("hasAcronym");

Node o = Node.createURI("RSA");

Triple triple = new Triple(s, p, o);

graph.add(triple);

Figure 2.10 Jena Architecture [52]

Figure 2.11 An Example of creating a triple in Graph Layer

www.manaraa.com

30

This code creates an instance of a Triple object, populated with a subject, predicate and

object. Each of these latter three are instances of the Node object. The triple is then added to the

RDF graph.

2. Model Layer

Figure 2.12 shows creating a triple in the model layer:

So what's different about these two techniques? At a glance, there's roughly the same amount of

code, and neither the Model nor the Graph layer seem to offer any more or any less in terms of

either complexity or simplicity. However, the Model layer has extended the core functionality in

the Graph layer in such a way, that by allowing developers to work with objects of type

"Resource" or "Property" or "Statement", instead of "Node" or "Triple", there are simply more

methods available in the Model layer objects that are convenient.

3. OntModel Layer

The third and final layer in the Jena API is the OntModel (Ontology Model) layer. This gives

you inference capabilities. That is, the ability to work with triples that are implied, in addition to

the triples that have been explicitly defined. So, if you have a predicate in your RDF model, and

it's defined as transitive, given these explicit relationships:

A -> B and B -> C

This relationship would be implied:

A -> C

The OntModel would be one way to arrive at this deduction. And it would do that by relying on

an automated reasoner responsible for finding implicit triples from explicit information.

The Jena Ontology API gives an overview of Ontologies and reasoning support in the Jena API.

An enhanced view of a Jena model that is known to contain ontology data, under a given

ontology vocabulary (such as OWL). This class does not by itself compute the deductive

extension of the graph under the semantic rules of the language. Instead, we wrap an underlying

model with this ontology interface that presents a convenience syntax for accessing the language

Resource s = model.createResource("Rational Software Architect");

Property p = model.createProperty("hasAcronym");

Resource o = model.createResource("RSA");

model.add(subject, predicate, object);

Statement statement = model.createStatement(subject, predicate, object);

Figure 2.12 Creating a Triple in Model Layer

www.manaraa.com

31

elements. Depending on the inference capability of the underlying model, the OntModel will

appear to contain more or less triples. For example, if this class is used to wrap a plain memory

or database model, only the relationships asserted by the document will be reported through this

convenience API. Alternatively, if the OntModel wraps an OWL inference model, the inferred

triples from the extension will be reported as well.

For example, assume the following ontology fragment:

 :A rdf:type owl:Class .

 :B rdf:type owl:Class ; rdfs:subClassOf :A .

 :widget rdf:type :B

In a non-inference model, the rdf:type of the widget will be reported as class :B only. In a model

that can process the OWL semantics, the widget's types will include :B, :A, and owl:Thing.

Note that OntModel is an extension to the InfModel interface. This is to support the case where

an ontology model wraps an inference graph, and we want to make the special capabilities of the

InfModel, for example global consistency checking, accessible to client programs. Since not all

OntModels use a reasoner, using these methods may result in a runtime exception, though the

typical behaviour is that such calls will be silently ignored.

2.11. Log File

The Logging package is an ultra-thin bridge between different logging implementations. A

library that uses the commons-logging API can be used with any logging implementation at

runtime. Commons-logging comes with support for a number of popular logging

implementations, and writing adapters for others is a reasonably simple task. As an example of

the logging API we want to present log4j as an example.

Log4j is a reliable, fast and flexible logging framework (APIs) written in Java, which is

distributed under the Apache Software License.

Log4j has been ported to the C, C++, C#, Perl, Python, Ruby, and Eiffel languages.

Log4j is highly configurable through external configuration files at runtime. It views the logging

process in terms of levels of priorities and offers mechanisms to direct logging information to a

great variety of destinations, such as a database, file, console, UNIX Syslog, etc.

2.11.1 Log4j has three main components:

Loggers: Responsible for capturing logging information.

Appenders: Responsible for publishing logging information to various preferred destinations.

Layouts: Responsible for formatting logging information in different styles.

2.11.2 Log4j Features

- It is thread-safe.

www.manaraa.com

32

- It is optimized for speed.

- It is based on a named logger hierarchy.

- It supports multiple output appenders per logger.

- It supports internationalization.

- It is not restricted to a predefined set of facilities.

- Logging behavior can be set at runtime using a configuration file.

- It is designed to handle Java Exceptions from the start.

- It uses multiple levels, namely ALL, TRACE, DEBUG, INFO, WARN, ERROR and

FATAL.

- The format of the log output can be easily changed by extending the Layout class.

- The target of the log output as well as the writing strategy can be altered by implementations

of the Appender interface.

- It is fail-stop. However, although it certainly strives to ensure delivery, log4j does not

guarantee that each log statement will be delivered to its destination.

2.11.3 Pros and Cons of Logging

Logging is an important component of the software development. A well-written logging code

offers quick debugging, easy maintenance, and structured storage of an application's runtime

information.

Logging does have its drawbacks also. It can slow down an application. If too verbose, it can

cause scrolling blindness. To alleviate these concerns, log4j is designed to be reliable, fast and

extensible.

Since logging is rarely the main focus of an application, the log4j API strives to be simple to

understand and to use.

2.12. Summary

In this chapter, we discussed the main technical foundations that we used in our proposed

approach. First, we defined the main technical terminology that our approach depend on. The

Web Services and their components the relation between them recognized and classified. Then

we defined the SOAP message as a lightweight transmission protocol and it`s structure. In

addition, we give a brief defined of Web Services attack that our approach handle. Also, we

presented the Ontology concepts and the main languages used for describe the RDF and the RDF

Schema and focus in the main steps needed to develop an ontology. Moreover, how to

recognized the domain and range of the system through asking specific question, in addition how

to identify the classes and properties of the ontology. Additionally, we introduced the WS-Policy

as an example of the policy restriction and the main terminology of the WS-Policy, and why this

standard cannot take place in the approach.

Also we present the main APIs that our proposed approach used in the implementation process.

Firstly we introduce the Document Object Model (DOM) API, and how it present the XML

www.manaraa.com

33

document in a tree manner. Then we present the SOAP with Attachment API for Java (SAAJ),

which is an API for creating and manipulating SOAP message and SOAP connection. After that

we give a brief introduction about the XML Path Language (XPath), and how do we use it to

navigate the XML document and get information about piece of XML document. Then we

discuss Apache Jena or Jena API for extracting data from and write to RDF graphs, and

introduce an example of calling the RDF graph, also we present it architecture. Finally we

present the Logging strategy, and take the Log4j Apache as an example.

www.manaraa.com

34

 Related Works Chapter 3

Security of Web Services is an important issue. According to a survey of senior IT executives

sponsored by computer Associates [1], 43% of the respondents answered that security is the most

significant issue for the deployment of Web Services. This result classifies the security of Web

Services as a hot study area. Many approaches have been proposed to handle the security in Web

Services. XML rewriting attacks are used [3] as a baseline for the attacks targeting SOAP

messages. According to [20], the threats can be categorized into four main classes according to

their consequences: (i) Disclosure: unauthorized access to data, (ii) Deception: the provision of

false data which is believed to be true, (iii) Disruption: preventing system from correct operation,

and (iv) Usurpation: leads to losing control of the assets to an unauthorized entity. Threats to

SOAP massages can be in any of these classes.

In reviewing related works, we review the main approaches for handling XML rewriting attacks

followed by Denial of Services attacks (DOSs) since we aim to handle them in our approach. We

classify XML rewriting attacks into three main approaches. Then we introduce Denial of Service

attacks.

3.1. XML Rewriting Approaches

Multi detection techniques and approaches are proposed to solve XML rewriting attacks, this

attack is a general name for a distinct type of attacks usually they depend on the malicious

interception, manipulation, and transmission of SOAP message. Where the attacker aim to

modify SOAP message. This modification classify as XML rewriting attacks. The XML digital

signature did not handle these kind of attacks according to [3]. Because the attacker can modify

the real position of the element without violating.

In order to take a deep look in XML rewriting detection approaches we classify they into three

categories as follow:

3.1.1. Inline Approaches

SOAP Account, [21] [22] the authors proposed an inline approach that takes into account

information about the structure of a SOAP message and adding it to new header element calls

SOAP Account element. SOAP Account contains number of envelop child, number of header

element, and number of reference of signing elements, predecessor, successor, and sibling of the

signing elements. The SOAP Account signing using X.509 certificate. Each node sign its own

SOAP Account and concatenated to the previous node. Although this approach detect and

prevent some kind of XML rewriting. But it is also vulnerable to other kind of XML rewriting

attacks.

 This according to [23] the SOAP Account approach cannot address all kind of XML rewriting

attacks, in addition they present some ideas to fix the approach but they did not present a

www.manaraa.com

35

complete solution. Also it is [22] vulnerable. Because it handles the Message ID and Timestamp

elements as optional elements, so replay attack can take place, in addition it does not include any

mechanism that can uniquely identify the parent of the signed element.

RewritingHealer used in [6] the authors attach a new element to the header containing

information about the structure of the SOAP message. They added new characteristics such as;

depth, parent name and parent ID. Although this new approach handle multiple kind of XML

rewriting attacks. But it still vulnerable to other kind. Where the main limitation of this solution,

that the attacker can move the signed elements together with its parent without violate the depth.

 Position of signed element [24] they used two methods, one to setting the element position and

the other to check the signed element position, this depending on post-order traversal by visiting

left node first, then right node, and finally root node, this mechanism in specifying the signing

element position suffer from the absence of uniquely identifier to the parent of the sign element

[21].

3.1.2. Policy Approaches

In general, usage a Web Services provides services to clients. On the other end, a client requests

a service via a particular application communicating directly to the Web Services or a web

browser connecting to the Web Services via AJAX (Asynchronous JavaScript and XML). In

order to protect SOAP messages from unauthorized parties to view or alter the messages, Web

Services has made the security a key element in open architectures.

However, basic Web Services specifications themselves do not address any security topics.

Several additional specifications as WS-Security [2], WS-SecurityPolicy [7], WS-Trust [25] and

WS-SecureConversation [26] are proposed.

 WS-Security [2] is the security mechanism for Web Services working in message level. It relies

on digital signature and encryption techniques to ensure that messages secured during

transmission. Digital signature provides data integrity or to proof authenticity to the

communications by using hash algorithm whereas encryption process offers data confidentiality

to the messages. In WS-Security case, encryption method can be implemented by either

symmetric or asymmetric method.

The main limitation of the WS-Security [2] according to [3] is handling the signed element real

position, where the XML signature locate the element by references. And this reference cannot

locate the real position of the signed element, we must here explain the idea of the WS-Security

specification in specifying the position of element it depend on references, this references can be

changed and the verification process can’t detect this change. This mean that the validation of the

signature did not violate after the real position changed.

Web Services Security Policy [7], if used correctly, can prevent such attacks. However, it is quite

difficult to specify all possible security requirements in the WS-Security policy file. The author

and the implementer of the security policy needs to be very careful in writing and implementing

www.manaraa.com

36

the policy, also we must say that the specification file that associated with the policy is hand

writing, here is the problem may the receiver misunderstand the requirement of the sender. In

addition, it is vulnerable to the same limitation as WS-Security [2].

Despite all the Web Services policy standards, SOAP message still suffering from vulnerable to

class of attacks. In [3] the author demonstrated the ability of changing the position of signed

element by XML digital signature without violating the validation. In this paper, author present

many example of XML rewriting attacks, also they explain how to use security policies correctly

in order to prevent attacks. Security policies are configured by showing that more sophisticated

XML rewriting attacks may avoid them, and by then improving the policy.

3.1.3. Other Approaches

A new model have been proposed in [27], their proposed model avoid XML rewriting attacks

and ensures secure conversation. The model highlighted three possible recommendations

namely. Using share key for encrypting timestamp in the message body for generating

corresponding signature. Secondly, using value referencing for both signature validation and

message processing. And finally encrypting the whole SOAP body instead of sending an open

SOAP message in the network to prevent unauthorized access, the main limitation in this

solution that it Consume time and resource in encrypt and decrypt the SOAP message beside

they rely on shared key, how this key will be shared without the knowledge of the attacker.

FastXpath [28], used subset of Xpath instead of ID attributes to point to the signed sub tree. This

solution is not flexible it limits the abilities of defining signature references.

Context-sensitive signature [29], the formal solution proposed here is a context-sensitive XML

signature. To address the additional requirements of SOAP extensibility model, where a SOAP

message can pass through several intermediaries before reaching the final receiver, an adaptive

variant of context-sensitive signature is proposed in their solution. The tradeoff is that the

context is to be generated and stored in the reference element of the signature in header

section before signing the message.

A schema solution introduced in [30]. The author tries to define the Web Services attacks and

proposed schema that should reflect structure for all possible genuine requests. Hence, they

proposed a new self-adaptive schema-hardening algorithm to obtain fine-tuned schema that can

used to validate SOAP message more effectively.

An ontology based approach has been presented in [31] [32] [33]. They proposed new approach

using ontology, by build the SOAP message using ontology then attach it to the header of the

message, also all modifications are written to log file. In [5] the same author makes a survey on

the rewriting attack. The main limitation on this study is it Exhaust the memory and the CPU.

An adaptable framework [34] is proposed for applying agents, data mining, and fuzzy logic

techniques to compensate for differences between anomaly and signature based detection for

www.manaraa.com

37

Web Services. According to [7], these techniques allow for decision making in uncertain and

inaccurate environments, but no concrete results provided.

An issued of [35] cloud security problems has been introduced, they classify it to four main

classes, which are XML signature element wrapping, browser security, cloud malware injection

attack and flooding attacks. In addition, they gives the possible countermeasures for each attacks,

the limitation is that each countermeasure separated from other and there is not a complete

system or model contains all the countermeasures.

A survey has been presented in [36] the author presents and classify all Web Services potential

threats and vulnerabilities and gives an idea about there after effects on architecture behind. Also

in [37] the author has presented a critically analyzed few server SOA security threats and their

implications on SOAP Web Services based on literature study and their real-time experience.

A common classification and description depending in ontology has been introduced in [38].

They try to classify and describe a common vocabulary for firewall/intrusion detection systems

vendors, this vocabulary based on ontologies, which can be define in OWL/OWL-S. The

advantages of this solution is that the security issues become a public and common terminology

and vulnerable.

3.2. Denial of Services Approaches

Denial of Service attack is the attack which targets the server behind the web services and aimed

at the request processing capability of the processor [39].

The idea of DOS is to manipulate the request in a way increasing the processing resources,

which cause the server of the web service to halt or denial legal user of the service. The next

section represent the main DOS types handling in our proposed approach and the detection

techniques used to detect each type.

3.2.1. Oversized Payload Approaches

Oversize payload attack aims to exhausting the resources of the web server. Against web

services, this is attack is easy to mount due to high computation cost of xml processing. The

reason behind this is that Web Service used tree in processing XML, such as DOM (Document

Object model).

Using this model mean read the XML document, parsing it, and converted it into in-memory

object representations. In case that the attacker replicate a single tag thousand time. In this case

the server halt or more resources exhausting.

A new strategy-based detection system implemented in [40]. They describe an XML injection

strategy-based detection system, XHDS, to mitigate the time gap for 0-day attacks resulting from

an ontology`s attack variations. Because many new and unknown attacks derived from known

strategies, they present XHDS as a hybrid approach that support knowledge-based detection

www.manaraa.com

38

derived from a signature-based approach. Then they apply ontology to design the knowledge

database for XML injection attacks against Web Services.

The approach limitations are focusing only on one kind of SOAP message attacks and ignores

the other kind, this solution cannot handle new injection attacks with new strategies.

The most perfect countermeasure for oversized payload attack is to put a checker checking the

size of the SOAP message [8].

3.2.2. Parameter Approaches

Parameter Tampering is a kind of XML injection attack in which the attacker modifies the

parameters in a SOAP message in attempt to bypass the input validation in order to access the

unauthorized information [41]. An attacker sends the SOAP message where the field values are

different what the server expects. In SOAP the parameter can take the form of XML Elements.

The server has XML Schema defined with a set of rules and restrictions regarding the input from

the client. In parameter tampering attack the attacker violates this schema or provide oversized

payload also known as XML Bombs. The Result is severe like Denial of Service is most

common, and also information Disclosure, etc.

One of the main popular solution for this type of attack is [42] Input Filtration. This solution test

the input of the users to remove characters like ،,",/,--,<script>. This solution ignore the input

type which is the most influent in causing this attack.

Also [8] proposed a solution which filter the input type, and check its type with the expected

type.

The only way to test such kind of attacks is simulation of attacks by automation tools. The

preventive measures are strict validation of SOAP message for input parameters and other

attachments.

3.2.3. Coercive-Parsing Approaches

Any web services need to parse the SOAP message to get the parameter out of the request and

transforming the request to make it accessible to the other application programs and this kind of

processing leads a another kind of possibility for the Denial of Service attack known as Coercive

Parsing [43].

 In this attack a sequence of opening tags belonging to the different namespaces is created and

this reduces the response efficiency to the web server to the considerable amount and further

leads to the Denial of Service.

 Such kinds of attack are very difficult to counter since XML does not provide any restriction for

the declaration of the namespaces used in the XML Document and also no limit to the number of

the External references used in the XML document, and if the referenced documents are also

deeply nested then it becomes a lot more difficult to counter. But, still such kind of attacks can

www.manaraa.com

39

be

mitigated to some extent by using Schema validation by providing the restriction to the number

of

elements regarding particular namespaces in the XML Schema Definition (XSD) file [42].

 In [44] proposed intrusion tolerant approach to avoid deep-nested XML. This approach consist

of monitor to monitor both the attack and intrusion symptoms. If an attack is detected. The

approach verified whether the intrusion symptoms appear on the target system or not. By other

word, only if the attack succeeds, an altar is triggered and reaction is performed.

3.2.4. Replay Approaches

In this attack the attacker repeatedly sends SOAP Message request (the same request) to the web

services in order to crash the system or restart. The target behind such type of attacks is to

overload the web services or to gain access to system by posing as a legitimate user.

Many solution has been proposed to detect and prevent such type of attacks. Author in [8]

proposed a filter that check the signature of the MessageID and Timestamps element of each

receiving message, if the filter find any violation to the signature SOAP message reject, other

way it pass. This solution is vulnerable to the XML rewriting attacks. Where the attacker can add

fake MessageID and Timestamp element without violating the signature validation.

So to avoid the replay attack you need to add timestamps and random session IDs, and make sure

that the attacker will not be able to manipulate.

3.3. Overcoming Limitations

3.3.1. First XML Rewriting attacks Overcoming limitations

To determine the limitations of each approach we decide to categorize them into three main

groups; such as the policy-based approaches, the inline approaches, and others. In addition,

specify each group’s limitations. If we use policy-based approach correctly, we can prevent

XML rewriting attacks by enforcing the location of the signed element in policy files in addition

the other attack can be detected also. However, the policy-based approach is not efficient.

In order to detect attacks of element deletion with policy-based approach, every element should

be declared as mandatory. This reduces the flexibility of the XML document and causes the

performance degradation in the validation phase.

Inline approach can overcome pitfall of policy-based approach, however, is not efficient too.

This is due to a high complexity of this approach, which needs a long calculation time in order to

determine the structural information.

The other approaches we have to introduce each approach and it limitations.

In order to mitigate XML rewriting attacks, we can analyze detection techniques according to the

following abilities.

www.manaraa.com

40

 Detection techniques should have detection ability that indicates their ability to catch

various kinds of Web Services attacks.

 Efficiency of these detection techniques is important as well. Because they have not only

detect attacks, but do so in a timely manner.

 Recovery ability means to catch XML rewriting attacks and recover from them.

 Detection technique should be adaptable to various XML rewriting attacks. It has to have

learning ability, which learns attack patterns and adapt to newly introduced attacks.

 The main reason why SOAP messages used in Web Services is their flexibility. This

provided by the XML-syntax. Thus, detection techniques should be able to conserve this

flexibility.

3.3.2. Second Denial of Services (DOS) Overcoming Limitations

In order to mitigate DOS attacks, we can classify the best countermeasure for each attacks

depending on the best practice which preserves integrity, confidentiality and time consuming.

 Oversized Payload countermeasure is to define a size to check the size of SOAP message.

 Parameter-Tampering best preventive measures are strict validation of SOAP message for

input parameters and other attachments.

 Coercive-Parsing such kind of attack can be mitigate using schema validation by

providing the restriction to the number of elements regarding particular namespace in the

XML Schema definition (XSD) file.

 Replay the perfect prevention techniques against this attack is to use the timestamps and

message-id.

3.4. Summary

The efforts reviewed in this chapter related to Web Services attacks are classified into two main

types: SOAP attacks which depend on XML rewriting, and SOAP attacks which target the Web

Services. The works related to XML rewriting attacks are classified into: inline approaches

which take into account information about the SOAP and store it in element, policy-based

approaches which define all the standard used to protect the SOAP message, and approaches

which depends on other techniques such as FastXPath and ontology-based. Table 1 summarizes

the limitations of the works related to XML rewriting attacks which is the main focus of our

thesis.

Table 1 Summary of XML Rewriting Attacks Approaches

Attacks Work Description Limitations

XML

Rewriting

SOAP Account [21] Cannot address all kind of XML rewriting attack.

Also this approach handle timestamps and message ID

as an optional.

In addition it does not include any mechanism that can

uniquely identify the parent of signed element

www.manaraa.com

41

RewritingHealer [6] The attacker can move the signed element without

violate the depth. Also it vulnerable to SOAP account

approach limitation.

Position of signed element:

[24]

The main limitation of this approach the ability to move

signed element without violate the validation. Also time

consuming.

WS-Security [2] Modified the signed elements without violate the

signature validation.

WS-Policy [7] The specification is hand writing, a problem of

misunderstand of the requirements.

Recommended FastXpath

[28]

FastXpath is not flexible as it limits the abilities of

defining signature references.

Suggest using Context-

Sensitive Signature (CSS)

[29]

The tradeoff is that the context is to be generated and

stored in the reference element of signature in header

section before signing the message.

Proposed model [27] Time consuming in encrypt and decrypt the whole

message, also the share key exchange without attacker

knowledge.

Schema Solution [30] Handling kind of XML Rewriting attack and ignoring

some.

An Ontology Based

Approach [31]

Exhaust resources in the checking using the four

module.

An Adaptable Framework

[34]

Make decision in uncertain environments.

www.manaraa.com

42

 The Proposed Approach for Detecting SOAP Message Chapter 4

Attacks

In this chapter, we present the approach for detecting SOAP message attacks based on a SOAP

structure ontology we designed for this purpose. We start by presenting the main components

and their roles in detecting SOAP message attacks. The approach depends on the ontology to

check the structure of the SOAP message and makes sure that during the transmission process

malicious modification has not taken place. Additionally, there are the policy filters which are

responsible for checking the SOAP message coming out of the ontology checker against Web

Services attacks.

First we present an overall structure of the approach, followed by building the ontology and how

it is used by the ontology checker, then we introduce the policy filters and their roles in the

approach.

4.1. Overall Structure of the Approach

The proposed approach consists mainly of ontology checker and the four policy filters as shown

in Figure 4.1. It consists of the following:

- Sender Side: in the sender-side, after creating the SOAP message, must capture the structure

of the SOAP message and add it to the log file in an encrypted manner.

- Log File: This log file also contains the logging event of the modification in the SOAP

message during the transmission between the intermediary nodes. Then this log file is

attached to the SOAP message as an attachment.

- Ontology Checker: The ontology checker compares the sent SOAP message structure with

the predefined and standard SOAP message structure captured and defined in the ontology.

Figure 4.2 is an example of the predefined SOAP message structure defined in the ontology.

If the checker finds any malicious modification or missing in an important element, therefore

the checker, retrieve the captured SOAP message existing in the log file and decrypt it. Also

compare the log file SOAP structure with the predefined SOAP ontology. If there is a

malicious missing or modification. So the SOAP message is rejected. Else, if the log file

SOAP achieve the condition of the predefined, and look like it. The ontology checker send

the log file SOAP to the filters as the received SOAP message.

- In the ontology, there is cases that represent all the kinds of modification or missing parts. If

the SOAP message look like any of these cases so the ontology checker rejects the message.

www.manaraa.com

43

Figure 4.3 represents the steps the ontology checker follows in checking the SOAP message

structure.

Figure 4.1 Structure of the adaptable ontology-based approach

- After the SOAP message passes the ontology checker, the filters start their checking

procedure in a parallel manner. Each filter specialized in check one kind of the SOAP

message attacks. Figure 4.4 present the procedure of the filters checking. In addition, it show

the condition and restriction used by the filter to check the SOAP message against the SOAP

message attacks.

- The Oversized Filter: this filter focuses on the size of the SOAP message to avoid over flow

attack and the denial of services. Therefore, this filter checks the size of the SOAP message

and compares it with maximum allowed size for a SOAP message. If the SOAP message

sized is more than the maximum size then the SOAP message must be rejected. Else, the

SOAP message is less than the maximum size, so the filter will pass the message.

- The Replay Filter: this filter focuses on the element value (creation element and expire

element), because the creation element consists of the time when the SOAP message has

been created. Consequently the SOAP message has limited live period. This period equals

the differences between expire time and the creation time, the result of the subtract process is

Compare received SOAP message

with the predefined SOAP message

structure based on ontology

Contain

logging event

and

encrypted

SOAP

message

www.manaraa.com

44

the living time of the SOAP message. The replay filter compare the current time with expire

time. If current time is less than expire time the message must be rejected. Else, if current

time is more than expire time the SOAP message is passed.

Figure 4.2 shows the structure of SOAP message captured in the ontology. Any attempt to modify

the SOAP message is caught by the ontology checker.

Figure 4.2 Structure of the SOAP message using Ontology

- Parameter Tampering Filter: this filter focuses in checking the input type of the SOAP

message (Focus on the type not the value). The matter of sending input type different from

the Web Services expected type. This kind of situation cause a Daniel of Services attacks

(DOSs). To avoid this attack the Parameter tampering Filter check and make sure that the

input type is the same as the Web Services expected as an input type. Else, the SOAP

message must be rejected.

Parent-Of

Parent-Of Parent-Of

Message

SOAP-Message Attachment-Part

MIME-Header

Attachment

SOAP-Part

SOAP-Envelop

SOAP-Body

SOAP-Body-

Element
SOAP-Body-

Fault

SOAP-Header

Message-ID Security Time-Stamps

Parent-Of
Parent-Of

Parent-Of

Parent-Of

www.manaraa.com

45

Figure 4.3 Ontology Checker procedure (flow Chart)

- Coercive Parsing Filter: this filter focus in checking the SOAP message format, if the

format of the SOAP message is fine, the message passed to the Web Services. Else, the

SOAP message must be rejected as shown in Figure 4.4.

Start

SOAP Message

Ontology

Checker

Pass to the Filter

Decrypt Log File

SOAP Structure

Ontology

Checker

Reject the Message

www.manaraa.com

46

Figure 4.4 Filters procedure

4.2. The Ontology based on Predefined SOAP message Structure

In this section, we present the steps of developing the SOAP message ontology structure; this

ontology must capture the structure of the SOAP message and present the main important

elements of the SOAP message.

The steps of developing the SOAP message ontology structure is following the steps discussed

and demonstrated in Section 2.5 Ontology Development Process.

SOAP Message

Accepted

SOAP Message

Oversized Filter

Replay Filter

Parameter

Tampering Filter

Coercive Parsing

Filter SOAP Message

Rejected

Less than maximum

size

Expire time less than

current time

Different input type Same input type

www.manaraa.com

47

Step 1: Determine the Domain and Scope of the Ontology

The first step in ontology development is defining ontology domain and scope, in which the

ontology will be developed in order to answer some basic questions:

1) What is the domain that the ontology will cover?

The ontology covers and captures the structure of the SOAP message, which is a specific and

limited domain serving the purpose of using the ontology.

2) What is the use of the ontology?

To detect any manipulation that happens to the SOAP message during the transmission process.

3) What types of questions would be answered by the information contained in the ontology?

The ontology will provide the structure of the SOAP message, and detect if there any

malicious modifications happens during transmission process and like

 What is the structure of the message?

 How many manipulations has happened?

 What kind of manipulation has happened?

 Is the element position re-located or re-named?

 Where the message has been manipulated, and by whom?

 What is the kind of XML attack, and how to handle it?

 Which element of the SOAP message deleted or missing?

Step2: Reuse Existing Ontologies

Existing security ontology such as [33], [32] and [31], do not separately cover the SOAP

structure. Therefore, after reviewing such ontologies, we decided to design our own ontology

that both covers the SOAP structures and suites the purpose of checking the validity and

detection of the SOAP message within the proposed approach.

Step3: Enumerate the Important Terms in SOAP message Ontology Structure

This step represents a brainstorming activity (see Section 2.5 Ontology Development). We use

the SOAP message`s important elements as the basis of the terms that we want to use. We

specify the properties for a term depending on the relationship between elements and the XML

rewriting attacks kind. The following questions guide out brainstorm activity to determine the

terms:

1. What are the main terms in SOAP message need to cover?

As shown in Figure 2.3 the main important terms is the main SOAP message elements, so the

terms we cover is a SOAP-Message, SOAP Envelope, SOAP Header, SOAP Body, Message ID,

Time Stamp, Security, creation, expire.

2. What are the properties of these terms?

 SOAP-Message term has the following properties: ParentOf. hasNode

www.manaraa.com

48

 Envelop term has the following properties: ParentOf, isExist, hasNode, and ChildOf.

 Header term has the following properties: Unique, isExist, ParentOf, hasNode, and ChildOf.

 Body term has the following properties Unique, isExist and ChildOf.

 MessageID term has the following properties: Unique, isExist, and ChildOf.

 Time-Stamp term has the following properties: Unique, isExist, ParentOf, hasNode, and

ChildOf.

 Security term has the following properties: Unique, ChildOf, and isExist.

 Creation term has the following properties: Unique, ChildOf, and isExist.

 Expire term has the following properties: Unique, ChildOf, and isExist.

Step4: Define Classes and Class Hierarchy of the Ontology

This step starts by defining classes. From the list, which created in Step 3, terms selected

whether they describe objects having independent existence or terms that describe these objects.

The terms in Table 4.1 are classes in the ontology and will become anchors in the class hierarchy.

Table 4-1 Ontology Main Terms

NO. Class Description

1 SOAP-Message Represent the SOAP message

4 Envelop Represent the SOAP message Envelop

5 Header Represent the SOAP message Header

6 Body Represent the SOAP message Body

7 Creation Represent the SOAP message creation time

8 Expire Represent the SOAP message Expire time

9 Message-ID Represent the message Id of the SOAP message

10 Time-Stamp Represent the time of the SOAP message

11 Security Represent the Security element

12 SOAP-Case Represent the famous XML rewriting attacks

There are three possible ways to develop the class hierarchy [27]: top-down approach, bottom-up

approach, or combination of both approaches. In our approach, we choose the top-down

approach. Therefore, level concept such as SOAP- Message, Envelope, Header, and Body.

Step5: Define the Properties of classes (Slots)

Once we define the classes, we clarify and reflect the internal structure concepts. This is

considered the property of the developed classes. These properties are related to the classes

illustrated in Table 4-1. These properties are illustrated in Table 4-2. Each property is based on a

www.manaraa.com

49

required and existing relationship between classes based on the standard SOAP structure. Every

property has its domain and range.

Table 4-2 Ontology Object Properties

Object

properties

Domain Range Description

isExist Header Envelop Header element isExist in SOAP-Envelop

MessageID Header Message-ID element isExist in Header

TimeStamp Header Time-Stamp element isExist in Header

Body Envelop Body element isExist in Envelop

Creation TimeStamp Creation element isExist in TimeStamp

Expire TimeStamp Expire element isExist in TimeStamp

Security Header Security element isExist in Header

ParentOf SOAP-Message Envelope SOAP-Message ParentOf (Envelope)

Envelop Header

Body

Envelop ParentOf (Header and Body)

Header Message-ID

Security

Time-Stamp

Header ParentOf (Message-ID, Security and Time-Stamp)

TimeStamp Creation

Expire

TimeStamp ParentOf (Creation, Expire)

ChildOf Envelope SOAP-Message Envelope ChildOf SOAP-Message

Body Envelop Body ChildOf Envelop

Header Envelop Header ChildOf Envelop

MessageID Header MessageID ChildOf Header

Security Header Security ChildOf Header

TimeStamp Header Timestamp ChildOf Header

Creation TimeStamp Creation ChildOf TimeStamp

Expire TimeStamp Expire ChildOf TimeStamp

Unique Header SOAP-Message Unique in SOAP-Message

Body SOAP-Message Unique in SOAP-Message

Message-ID SOAP-Message Unique in SOAP-Message

TimeStamp SOAP-Message Unique in SOAP-Message

Security SOAP-Message Unique in SOAP-Message

Creation SOAP-Message Unique in SOAP-Message

Expire SOAP-Message Unique in SOAP-Message

hasNode Envelop Header

Body

Envelop hasNode (Header, Body)

SOAP-Message Envelop SOAP-Message hasNode Envelop

TimeStamp Creation

Expire

TimeStamp hasNode (Creation, Expire)

Header TimeStamp

MessageID

Security

Header hasNode (TimeStamp, MessageID, Security)

www.manaraa.com

50

Table 4-3 illustrates the data properties of the proposed ontology such as the data type properties

of the ontology and the relations between them and the classes in the class hierarchy.

Table 4-3 Ontology Data Properties

Data

Property

Domain Range Description

hasValue MessageID Integer MessageID element must hasValue work as identifier for the

SOAP message.

Creation Date Creation element must hasValue presents the creation time

of the SOAP message.

Expire Date Expire element must hasValue present the time expire of

SOAP message.

hasDepth SOAP-Message Integer SOAP-Message must hasDepth integer value to identify the

depth of the element.

Envelop Integer Envelop must hasDepth integer value to identify the depth of

the element.

Header Integer Header must hasDepth integer value to identify the depth of

the element.

Body Integer Body must hasDepth integer value to identify the depth of

the element.

Security Integer Security must hasDepth integer value to identify the depth of

the element.

TimeStamp Integer TimeStamp must hasDepth integer value to identify the

depth of the element.

MessageID Integer MessageID must hasDepth integer value to identify the

depth of the element.

Creation Integer Creation must hasDepth integer value to identify the depth

of the element.

Expire Integer Expire must hasDepth integer value to identify the depth of

the element.

Step6: Define the Facets of the Slots

Slots have different facets that describe the value type, allowed values, the number of the values

(cardinality), and other features of the values the slot can take. In our case most of the slot values

are integer. For example, the value type of hasDepth Property is integer and value type of

hasValue in Time-Stamp is Date.

www.manaraa.com

51

Step7: Create Instances

As usual after, defining the ontology classes and properties (Slots, and Facets) we need to create

individuals of the ontology. In our ontology, we present the individuals as the XML rewriting

attacks cases to allow the properties of the classes to be record.

The main role of the ontology SOAP message structure is to capture the SOAP message

structure, we have define cases present the types of modification or missing elements in the

SOAP message, these cases define in each case on the XML rewriting attacks kind.

Figure 4.5 present the SOAP-Case class, which has six individuals. The individuals SOAP-Attack

from one to five present the main kind of XML rewriting attacks, and the individual SOAP-

Normal demonstrate the SOAP message structure without any malicious intent.

Step8: Evaluation process

In the Evaluation Process, we aim to demonstrate that the Ontology SOAP message Structure

achieving the purpose of building it. Therefor we present two main SPARQL using in the

process of testing the SOAP message structure, these two SPARQL work perfectly and achieving

the expectation of building the ontology SOAP message structure.

The result of using the SPARQL in Figure 4.6, return the child of envelope element, in the usual

status the envelope element has two element. The body element as a mandatory part and the

header element as an optional part, in our approach the header element is also mandatory,

because it consist of element used in the detection process such as the TimeStamp element.

Figure 4.5 Ontology Individuals

www.manaraa.com

52

The result of using the above SPARQL is shown in Figure 4.6 illustrated in the Figure 4.7, so the

body element and the header element is a mandatory child element of the envelope element in

our approach.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX SOAP: <http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#>

SELECT ?a

WHERE { SOAP:Envelope SOAP:ParentOf ?a.}

Figure 4.6 SPARQL for Calling Envelope element child

Figure 4.7 Envelope SPARQL

www.manaraa.com

53

The result of using the SPARQL in Figure 4.8, return the child of the TimeStamp element, and to

make sure that our ontology is working right the child of the TimeStamp element is expire and

creation. If the ontology return them then the ontology is working right.

Figure 4.9 show the result of the SPARQL in the TimeStamp element. As it demonstrate in the

Figure 4.9 the child element of the TimeStamp class is the creation class and expire class. In this

case the ontology SOAP message structure implement the constrain and condition of the SOAP

message structure.

Figure 4.9 SPARQL of the Timestamp child elements

4.3. Policies determination

Policies Filter start it work after the Ontology Checker finished checking the SOAP message

structure against XML rewrite attack as shown in Figure 4.1. It defines a framework for allowing

Web Services to express their constraints and requirements. Such constraints and requirements

expressed as policy assertions. This policy enforce the sender to comply these constraints and

requirements. To make sure that SOAP message is free from any malicious intent. If any of these

constraints and requirements missing or modified in malicious way the SOAP message will be

rejected.

In our research, we intend to use the policy assertion as a policy filters to detect the Web

Services attacks and reject the malicious SOAP messages we illustrate in Figure 4.4, if there is

any fail in one filter test the SOAP message will be rejected. Our policy filter focus in four main

attacks (oversized or buffer overflow attack, message replay attack, parameter-tampering attack,

and coercive parsing attack). We intend to test the SOAP message against this attack in a

parallel.

Figure 4.8 the SPARQL of Return the Timestamp child elements

www.manaraa.com

54

 The goal of handle the policies filter as a multiple thread is save the time consuming. We

provide the algorithm that use to handle each filter then in the implementation chapter we

illustrate how each filter works.

4.3.1. Oversized filter

In this filter, rather attack the attacker aim to insert malicious content with well-formed message

in SOAP request, which is beyond the allowable size of the buffer and causes Denial of Services

attack (DOS). Which cause system halt or restart. Therefore, to avoid this attack the oversized

filter must measure the size of the incoming message.

The Web Services developer must estimate the maximum expected size of the SOAP message. If

the incoming SOAP message is more than that expected size, message must be rejected. If the

services provider do not set the maximum expected size. The SOAP message will not be more

than 2048. Therefore, any SOAP message more than 2048 byte is count as a malicious intent. In

the other hand the services provider can set exactly size according to his expectations. Figure 4.10

illustrate the algorithm strategies:

4.3.2. Message Replay Filter

This filter is focus in expire time of the SOAP message which exist as a Child node of the

Timestamp element. Therefore any SOAP message has not expire time, must be rejected

immediately. If the expire is exist, this filter bring the value of expire time and compare it with

the current time. If expire time has passed and less than the current time this SOAP message

must be rejected. Else, if the current time less than expire time the SOAP message will passed as

a non-malicious SOAP message.

Figure 4.11 demonstrate the steps followed in the checking process of this filter.

1. Get XML document of client

2. Get messaging attribute

3. If maxMessagingLength = 2048 byte then process the SOAP message

4. Else discard

Figure 4.10 Oversized filter Algorithm

1. Get Time-Stamp element value

2. If Time-Stamp is missing reject the message

3. Compare the Time-stamp value with the current time depending on the

MaxMessageAge

4. If there is any mismatch message reject

5. Else continue

Figure 4.11 The Algorithm of Message Replay Filter

www.manaraa.com

55

4.3.3. Parameter Tampering Filter

In the Web Services, the WSDL file contain the input data type, the attacker can use this

vulnerable and sent another input type which cause the Web Services halt. To avoid this situation

we need to check the input type, the checking process focus in type of input no the expected

value. This checking process follow define procedure.

First, we check the input type for the null or empty value. If the input is null or empty, the SOAP

message must be rejected. Else if the input type not null or empty the input must checked to

make sure that this input type is the expected type. So the filter has the expected type of input

and compare the type of the expected and the input. If they were different, the SOAP message

must be reject. Else, they is same therefore, the SOAP message passed.

Figure 4.12 illustrates in algorithmic steps the parameter tampering filter steps.

4.3.4. Coercive Parsing Filter

The filter verify the received message for wrong format of SOAP message by generating SOAP

fault code. This filter blocks the input that has a strange format. This policy is used the values in

SOAP fault code. They are:

- Version Mismatch Fault Code: it finds invalid namespaces for a SOAP envelop and throws

exception.

- Must Understand Fault Code: it indicates whether a header entry is mandatory or optional for

the recipient to process.

Many of things can go wrong with the Web Services message. The Web Services may encounter

a problem, input data may be wrong or a header may come across which the server does not

understand. The algorithm for coercive parsing filter is illustrate In Figure 4.13.

1. Get the input data

2. If the input data equal null or empty

3. Reject the Message

4. If the input data mismatch the data type

5. Reject the message

6. Else continue

Figure 4.12 The Algorithm of Parameter Tampering Filter

1. Get XML document

2. If(SOAP version == valid namespace)

If(mustUnderstand==1)

Allow

Else throw Must Understand Fault Exception

3. Else

Throw version Mismatch Fault Exception

Figure 4.13 The Algorithm of the Coercive Parsing Filter

www.manaraa.com

56

4.4. Summary

Previous chapter try to present the proposed approach components, functionality, and their

procedure. First we gives an overall illustration of approach steps. Through this steps we

illustrate the checking implementation and procedure to detect the SOAP message attacks.

Then we present the steps of building the predefined SOAP message ontology depending on

Section 2.5. In this section we inferred and classified the main terms to represent the class

hierarchy. Also we define the relation between these classes to define the properties.

In our proposed approach we try to capture the structure of SOAP message. And this can be

achieved using ontology, and to build the prefect ontology, we must define clearly the important

classes (elements) in SOAP message we need it to be exist, also define the relationship between

these classes. This definition prevent SOAP message from XML rewriting attacks.

Finally we illustrate the policy filters. The manner of illustrating policy filters is an algorithmic

style, which can be achieved in any programming language. We try to define exactly the role of

each filter and the way these policy filters checking the SOAP message against each attacks.

www.manaraa.com

57

 Implementation Chapter 5

In this chapter, we implement the proposed approach. First, we illustrate the SOAP message

creation process and how to attach it to the log file. We use the SAAJ API in the creation and

attaching process. In the second section, we present the log file identifying process, in our

approach the log file main role is capturing the SOAP message structure. In the other hand the

log file record each logging event happened to the SOAP message during the transmission

process.

Then we present the implementation steps to realize the components of the approach. The

components include the ontology checker and the filters; Oversized filter, Replay filter,

parameter-tampering filter, and coercive parsing filter.

5.1. SOAP message Creation

There are various APIs for creating a SOAP message. We choose the SOAP with Attachment

API for Java (SAAJ) [45]. We need to attach a file to the SOAP message, so the SAAJ allow us

to do so. The SAAJ API presents, defines methods, which is responsible for creating the SOAP

message part (here we present the SOAP message part such as body, and header as element).

The SOAP message specification is an extension and flexible specification, it allows the user to

define his own node (element), but this SOAP message created by the user must follow some

restrictions according to the SOAP message version, and the existence of the envelop and the

body part as a mandatory part. These parts must exist in any SOAP message to illustrate that this

XML document is a SOAP message.

In our proposed approach we focus in the main important element, so our approach handle these

elements as a mandatory element, which must exist in any received SOAP message. Missing

elements means that SOAP message was modified.

Figure 5.1, presents the SOAP message parts we intent to add and must exist in any SOAP

message our approach is checking. Therefore, the SOAP message must include these elements.

www.manaraa.com

58

Figure 5.1 SOAP Message Element in SAAJ

We illustrate the code for creating SOAP message using the SAAJ API, so we introduce the

main steps of defining and creating the SOAP message elements. Additionally, we explain how

to attach the log file using the SAAJ API.

a) Create the SOAP message and the SOAP message Connection

A very important step in creating the SOAP message using the SAAJ API is using the

SOAPConnectionFactory method instance() to instants the SOAP message.

Then we use the class MessageFactory and insatiate an object of this class using the instance()

method, which will use by the createMessage() method to create empty SOAP message which

has not any part. The SOAPConnection class use to create the SOAP message connection using

the predefine method createConnection(). All these steps are illustrated in Figure 5.2.

b) Create the SOAP Part element (Body, Header, and Envelop)

The SAAJ API present an amazing way to create the SOAP message parts, but we must follow

some steps as follow. First we need to create SOAPPart as a container for the other parts, to

achieve this goal we insatiate the class SOAPPart using the predefine method getSOAPPart().

SOAPConnectionFactory factory = SOAPConnectionFactory.newInstance();

SOAPConnection connection = factory.createConnection();

MessageFactory mf =MessageFactory.newInstance();

SOAPMessage msg = mf.createMessage();

Figure 5.2 SOAP message Creation and Connection

www.manaraa.com

59

After that we create the SOAPPart object, which is used in creating the SOAPEnvelope object

class using the method getEnvelope(). Then we need to call the envelope object to insatiate the

header and body part using the methods (getHeader(), and getBody()).

These steps of creating an empty parts of the SOAP message illustrated in Figure 5.3

c) Create the SOAP Header elements

The SOAP Header element has three elements (Security, Message-ID, and Time-Stamp) as

shown in Figure 5.1. In Figure 5.4 we show how to create each of these elements of the SOAP

Header.

Figure 5.4 SOAP Header Elements create

d) Create the Attachment Part

The attachment file (log file) has two main roles: capturing the SOAP message structure, and

registering and laying the logging events. As illustrated in Figure 5.1, the attachment presents the

log file.

Before building the log file structure, we need to insatiate it, the log file instance is passed as

input through the FileDataSource object, to enable us to use this object as an input to the

DataHandler object which uses it in the AttachementPart class. Then we set the content ID of the

attachment using the method setContentId() to make it easy to find the attachment. After that we

add this attachment to the SOAP message using the method addAttachmentPart().

Figure 5.5 illustrates these steps, our intent here is to create and attach the log file but the structure

of the logging event lay out and the capturing of the SOAP message structure is demonstrated in

Section 5.2.

SOAPPart soapPart = msg.getSOAPPart();

SOAPEnvelope envelope = soapPart.getEnvelope();

SOAPHeader header = envelope.getHeader();

SOAPBody body = envelope.getBody();

Figure 5.3create SOAP Part elements

SOAPHeaderElement security = header.addHeaderElement(envelope.createName("Security", NS_PREFIX, NS_URI));

 SOAPHeaderElement Time = header.addHeaderElement(envelope.createName("TimeStamp",NS_PREFIX ,NS_URI));

SOAPElement creation = Time.addChildElement("creation",NS_PREFIX);

 creation.addTextNode(formatter.format(create));

 SOAPElement expire = Time.addChildElement("expire",NS_PREFIX);

 expire.addTextNode(formatter.format(expires));

 SOAPHeaderElement MsgID = header.addHeaderElement(envelope.createName("MessageID",NS_PREFIX ,NS_URI));

www.manaraa.com

60

5.2. Building Log File

We need to illustrate the log file structure and the way we build it to achieve its goals. The

building of the log file focuses in two main role, first registering the logging event, secondly

capturing the SOAP message structure.

First, we define the type of property we intent to use. So we use the class PropertyConfigurator

predefine method configure() to indicates to the logging properties file where the logging event

layout is built and specified. This step illustrated in Figure 5.6.

Then in the properties file we specify and classify how the logging event layout and which

logging information we are interested in. This specification is illustrated in Figure 5.7. In addition,

the result of these specification are written in the log file.

Second, we illustrate the way to capture the SOAP message structure. After we have created all

the SOAP message elements and specification. We write this SOAP message to the log file. In

this process we need to pass the log file through FileOutputStream. This step is show in

File myfile = new File("admin.log");

FileDataSource fds = new FileDataSource(myfile);

DataHandler dh = new DataHandler(fds);

AttachmentPart ap2 = msg.createAttachmentPart(dh);

ap2.setContentId("attachment");

 msg.addAttachmentPart(ap2);

 MimeHeaders headers = msg.getMimeHeaders();

String [] contentType = headers.getHeader("Content-Type");

Figure 5.5 Create the Attachment Part

PropertyConfigurator.configure("loger.properties");

log4j.rootLogger=DEBUG, file

#Log message in the admin.log file

log4j.appender.file=org.apache.log4j.FileAppender

log4j.appender.file.File=admin.log

log4j.appender.file.layout=org.apache.log4j.PatternLayout

log4j.appender.file.layout.ConversionPattern= %-4r [%t] %d{dd MMM YYY HH:mm:ss,sss} %-

5p %c %F - %m%n

Figure 5.7 The layout of the Log file

Figure 5.6 file of properties

www.manaraa.com

61

Figure 5.8.

Figu

re 5.

9

Illu

strat

es

an

exa

mpl

e of

the

resu

ltin

g

log

file

capt

urin

g

the

stru

ctur

e

SO

AP

message and Figure 5.10 presenting the logging event laying.

File file = new File("admin.log");

 FileOutputStream out = new FileOutputStream(file);

msg.writeTo(out);

Figure 5.8 Capture SOAP Structure

------=_Part_0_186370029.1446694511152

Content-Type: text/xml; charset=utf-8

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>

 <jaxmtst:security xmlns:jaxmtst="http://www.jcommerce.net/soap/jaxm/TestJaxm">

 <jaxmtst:signature>Signed Value<jaxmtst:reference>Refvalue</jaxmtst:reference>

 </jaxmtst:signature>

 </jaxmtst:security>

 <jaxmtst:TimeStamp xmlns:jaxmtst="http://www.jcommerce.net/soap/jaxm/TestJaxm">

 <jaxmtst:creation>2015-11-05T03:35:05.897Z</jaxmtst:creation>

 <jaxmtst:expire>2015-11-05T03:40:05.897Z</jaxmtst:expire>

 </jaxmtst:TimeStamp>

 <jaxmtst:MessageID xmlns:jaxmtst="http://www.jcommerce.net/soap/jaxm/TestJaxm">

 <jaxmtst:ID>IDvalue</jaxmtst:ID>

 </jaxmtst:MessageID>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <m:GetLastTradePrice xmlns:m="http://wombat.ztrade.com">

 <symbol>SUNW</symbol>

 </m:GetLastTradePrice>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

------=_Part_0_186370029.1446694511152

Content-Type: text/plain

Content-ID: attachment 1001

www.manaraa.com

62

Figure 5.10 represents the logging event layout. The way the logging event will register in the log

file. This logging event specify the information we looking for.

5.3. SOAP-Message Ontology Structure Implementation

In this section, we implement the SOAP message ontology and show how it reflects the SOAP

message structure based on the ontology design presented in Section 4.2. First we define the

important classes and properties, then we explain the way that the SOAP message Ontology

works to detect the XML rewriting attacks, and keeping the message structure as it was being

sent from the original.

5.3.1. Define Important Terms (Class Hierarchy)

In this section, we illustrate the classes of the SOAP message ontology and explain the role of

each class, the classes are shown in Figure 5.11. The OWL file presenting the ontology presented

Nov 2015 05:14:56,056 DEBUG test.Test Test.java - message creation

178 [main] 05 Nov 2015 05:14:57,057 INFO test.Test Test.java - SOAPPart creation

190 [main] 05 Nov 2015 05:14:57,057 INFO test.Test Test.java - Envelope creation

218 [main] 05 Nov 2015 05:14:57,057 INFO test.Test Test.java - header creation

219 [main] 05 Nov 2015 05:14:57,057 INFO test.Test Test.java - body creation

220 [main] 05 Nov 2015 05:14:57,057 INFO test.Test Test.java - security header creation

222 [main] 05 Nov 2015 05:14:57,057 INFO test.Test Test.java - signature creation

224 [main] 05 Nov 2015 05:14:57,057 INFO test.Test Test.java - reference creation

224 [main] 05 Nov 2015 05:14:57,057 INFO test.Test Test.java - time creation

225 [main] 05 Nov 2015 05:14:57,057 INFO test.Test Test.java - messageID element creation

226 [main] 05 Nov 2015 05:14:57,057 INFO test.Test Test.java - body element creation

228 [main] 05 Nov 2015 05:14:57,057 INFO test.Test Test.java - attachment creation
Figure 5.9 An Example of Log File

Figure 5.10 Log File Logging Event

Figure 5.11 The SOAP message Ontology Structure

www.manaraa.com

63

in Appendix1.

The ontology as shown in Figure 5.11 has many classes. There are two kinds the SOAP message

classes which is represented in the predefined SOAP message structure. In addition, the position

of these classes as super and sub classes is very important issue. Moreover, the SOAP case class,

which is represented the famous kind of XML rewriting attacks as instances.

The following are the SOAP message ontology structure classes:

- Envelope: Envelope class represents the SOAP-Envelope element, which define the SOAP

version and the name spaces used in the SOAP message. The missing of this class/element

mean this XML document is not a SOAP message. So this Envelope is a mandatory element.

- Body: this class represent a very important element in the SOAP message. This element is

SOAP-Body and it is a mandatory element, which contains the message purpose, input, or

fault message information, the missing of Body element mean this XML document is not a

SOAP message. Therefore body is a mandatory element.

- Header: Header class represent the SOAP-Header element. In our approach the SOAP-

Header element is a mandatory element because it contains of sub-children define security

restrictions.

- Timestamps: this class represent a container of two main element as it sub-classes, the

creation and expire classes. This class is response of register the time of the creation and

expire time of the SOAP message. So this element represents a mandatory element in our

ontology.

- Message-ID: this element represent the identification number of the SOAP message and it is

a very important element in detection duplicated message. This prevent SOAP message from

replay attack. Therefore Message-ID is a mandatory element in our ontology.

- Security: this class represent any constrain Web Services provider want to add such as

signing element. Encryption mechanism. In our ontology Security element demonstrates a

mandatory element.

- Creation: this class represent the creation time of the SOAP message and it is a sub child of

the Timestamps class. We determine the period of live of a SOAP message this element

should exist. So this also a mandatory element in our ontology.

- Expire: as the creation class, this class is represented time where the SOAP message expire

and become out of date. Moreover the absent of this element deprivation the Web Services

www.manaraa.com

64

from the ability to check message against Replay attack. Therefore this class is a mandatory

class in our ontology.

- SOAP_Case: this class represent the main XML rewriting attacks. The missing situation and

the malicious modification.

- SOAP_Message: this class work as a container to the SOAP message classes.

These classes identify the main structure of the SOAP message the user can add any number of

class that he wish. However, in our approach these classes present a mandatory element. The

main idea is to detect the manipulation process in the SOAP message during the transmission

process, the original message is exist in the log file, if the attacker change the structure of the

SOAP message the ontology checker will detect that changes and return the SOAP message to

the original structure.

This is the main idea of using predefined SOAP message ontology structure. Is to compare the

received SOAP message structure with the hidden original SOAP message structure and detect

any type of XML rewriting attacks that happened to the SOAP message during the transmission

process.

5.3.2. Define Slots and Facets

In this Section, we discusses the properties of the predefined SOAP message Ontology Structure,

and we illustrate the way they work together to make sure that the SOAP message has not been

changed during the transmission process. In Figure 5.12 we illustrate the main object properties in

our SOAP message Based Ontology, and later we will discuss each property and it role.

Figure 5.12 SOAP message Ontology Structure Properties

The properties in the ontology present the verb, and to make your sentences more powerful and

meaningful you need to use the appreciate verbs.

The properties of our ontology is a very meaningful to describe the main relationship between

the classes, let us illustrate and discuss them:

www.manaraa.com

65

- parentOf: this properties focus on the position of the SOAP element to specify the relation of

sub and super classes. As an example the Envelope class is parentOf the classes Header and

Body. The Figure 5.13 show the relation between them.

Figure 5.13 parentOf Properties Example

- childOf: this property is mapping the sub class to the super class to exactly define the SOAP

message position. As an example, the Body class is a childOf the Envelope class. This

example is illustrated in Figure 5.14. This property clarify which class is a sub class of which

class.

Figure 5.14 childOf Properties Example

- hasNode: this property specify which element has node as sub classes and which classes has

not. The use of this property appear in the definition of the predefine SOAP attacks. When

the SOAP message has not body class for example. Figure 5.15 show the SOAP_Attack1

where are the creation and expire classes are missing.

www.manaraa.com

66

Figure 5.15 hasNode Property

- unique: this property clarify that this class never been duplicated. Example of this property is

the Body class. The SOAP message impossible has two-body element. Figure 5.16 show the

property.

Figure 5.16 unique property

- isExist: this property clarify which classes of the SOAP message classes must be exist.

Moreover the missing of this class is count a vulnerable in the SOAP message structure. An

example of this property is the creation class. As shown in Figure 5.17. The missing of the

creation time of the SOAP message reject the message.

www.manaraa.com

67

Figure 5.17 isExist Property

5.4. Detecting XML Rewriting Attacks in SOAP Message Using Ontology

Checker

In this section we implement the checking process of the SOAP message structure using

ontology checker component. The checking process is divided into the following steps. The

entire code for checking SOAP message structure using ontology checker is demonstrated in

Appendix 4.

Step 1: Get received SOAP message:

In this step, we receive SOAP message. It is received as an XML file. First we parse and

restructure the message using Document Object Model (DOM) as shown in Figure 5.18. This step

makes SOAP message ready for using and checking.

Step 2: Check the received SOAP message based on ontology:

We call the received message from the previous step. We compare the received SOAP message

structure that is captured based on the ontology at the sender side with the predefined SOAP

message structure based on the ontology. This is separated into the following subtasks:

File fXmlFile = new File("SOAP_xml.xml");

DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newInstance();

DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();

Document doc = dBuilder.parse(fXmlFile);

Figure 5.18 Prepare SOAP Message

www.manaraa.com

68

- First we make sure that all the mandatory elements exist. Therefore we query the ontology

using SPARQL query that returns all elements based on the ontology. The SPARQL used for

this purpose is demonstrated in Figure 5.19.

- Next we check the positions of these elements based on the predefined SOAP message

structure using the ontology. To achieve this purpose, we SPARQL the ontology to check

child elements existence and predefined relationship between SOAP elements. This checking

procedure focuses on checking three main elements: Envelope, Header, and Timestamp.

Figure 5.20 demonstrates the SPARQL query over Envelope element to return its child

elements; Header and Body.

Figure 5.21 illustrates the SPARQL query used over the Header element to return the child

elements of the Header element, namely, Timestamp, Security, and Message-ID.

Figure 5.22 illustrates the SPARQL query used over the Timestamp element to return its child

elements; Creation and Expire.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" +

"PREFIX owl: <http://www.w3.org/2002/07/owl#>\n" +

"PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n" +

"PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>\n" +

"PREFIX SOAP: <http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#>\n" +

"SELECT ?a ?t ?x\n" +

" WHERE { ?a rdf:type SOAP:SOAP_Message.}

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" +

"PREFIX owl: <http://www.w3.org/2002/07/owl#>\n" +

"PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n" +

"PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>\n" +

"PREFIX SOAP: <http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#>\n" +

"SELECT ?a\n" +

" WHERE { SOAP:Envelope SOAP:ParentOf ?a.}

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" +

"PREFIX owl: <http://www.w3.org/2002/07/owl#>\n" +

"PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n" +

"PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>\n" +

"PREFIX SOAP: <http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#>\n" +

"SELECT ?a\n" +

" WHERE { SOAP:Header SOAP:ParentOf ?a.}

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" +

"PREFIX owl: <http://www.w3.org/2002/07/owl#>\n" +

"PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n" +

"PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>\n" +

"PREFIX SOAP: <http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#>\n" +

"SELECT ?a\n" +

" WHERE { SOAP:TimeStamp SOAP:ParentOf ?a.}

Figure 5.19 Return All Elements based on Ontology

Figure 5.20 Return Envelope Sub-elements

Figure 5.21 Return Header sub-Elements

Figure 5.22 Return Timestamps sub-elements

www.manaraa.com

69

- After performing the checking of the predefined SOAP message structure based on the

ontology, we check the elements of the receiving SOAP message to insure the existence of

all the mandatory elements and the correctness of their positions in the received message.

Figure 5.23 shows the way we return all the elements of the received SOAP message.

Then in Figure 5.24 we demonstrate the way we return the sub-elements of envelope; Header

and Body. Similarly, we query all the elements in the received message.

Step 3: Restoring missing or modified elements in the received message based on the log

file:

If there are missing or modified elements in the received message based on the Step 2, we

retrieve the encrypted SOAP message from the log file. If all of these elements exist in the

retrieved message, then we again check using the ontology checker the positions of these

elements by comparing them with the elements from the predefined SOAP message structure.

Any missing or modification in the encrypted message retrieved from the log file is detected,

therefore the message is rejected and we don't need to proceed to the policy filters checking. But

if the message in the log file is correct, then we use this message to restore the missing or

modified elements on the received message. After the message is restored and corrected we pass

it to the policy filters to check for Web Service attacks.

5.5. Policy Filters Implementation

We have created each filter as a separate thread using the Runnable interface in order to perform

all kinds of filter checking concurrently therefore speeding up the filtering process.

DocumentBuilderFactory docBuilderFactory = DocumentBuilderFactory

 .newInstance();

 DocumentBuilder docBuilder = docBuilderFactory.newDocumentBuilder();

 Document document = docBuilder.parse(new File("SOAP_xml.xml"));

 NodeList nodeList = document.getElementsByTagName("*");

 for (int i = 0; i < nodeList.getLength(); i++) {

 Node node = nodeList.item(i);

 if (node.getNodeType() == Node.ELEMENT_NODE) {

 String elements = node.getNodeName();

 array.add(elements); } }

DocumentBuilderFactory docBuilderFactory = DocumentBuilderFactory.newInstance();

 DocumentBuilder docBuilder = docBuilderFactory.newDocumentBuilder();

 Document document = docBuilder.parse(new File("xml.xml"));

 XPathFactory xPathfactory = XPathFactory.newInstance();

 XPath xpath = xPathfactory.newXPath();

 XPathExpression expr = xpath.compile("/Envelope/*");

 Object result = expr.evaluate(document, XPathConstants.NODESET);

 NodeList n1 = (NodeList) result;

 for (int i = 0; i < n1.getLength(); i++) {

 String child =n1.item(i).getNodeName();

 envelop.add(child); }

Figure 5.23 Return received SOAP message elements

Figure 5.24 Return Envelope sub-elements received SOAP message

www.manaraa.com

70

5.5.1. Oversized Filter

Figure 4.10 Shows how the Oversized Filter works, first we load the SOAP message, then we

calculate the size of the whole file and compare the size with the maximum allowable SOAP

message size. This implements calculate and compare step in Section 4.3.1.

5.5.2. Replay Attack Filter

In Section 4.3.2, we explain the algorithmic procedure, first we bring the expire node from the

Time-Stamp. If the expire node is missing then reject the SOAP message. Then we compare its

value with the current time, if the expire node value is less than the current time then the SOAP

message is fine. Else, reject the SOAP message. In Figure 5.26 we show the comparison

procedure.

5.5.3. Parameter Tampering Filter

In Section 4.3.3, we explained the algorithmic procedure, first we test the input for null and

empty value then we compare the type of the input with the expected type, if they are the same

then the message passed, else the message reject, these steps shown in Figure 5.27.

 public static double over ;

 public static void main (String [] args){

 try {File file =new File("xml.xml");

 over = 1800;

 double size = file.length();

 if (size <= over){ String result = "Thm Message is less than the maximum Size";

 JOptionPane.showMessageDialog(null, result);

 }else{ String result = "Reject the SOAP message (OverSize Attack)";

 System.out.println(result);

 } }catch (Exception e){ System.out.println(e.getMessage()); }}

if (expireTime.compareTo(currentTime) > 0) {

 System.out.println("Expire Time is more than Current Time, Reject the message");

 System.exit(0);

 } else if (expireTime.compareTo(currentTime) < 0) {

 System.out.println("Expire time is less than Current Time");

 } else if (expireTime.compareTo(currentTime) == 0) {

 System.out.println("Expire Time is Equal Current Time, ");

 } else {

 System.out.println("Something weird happened...");

 System.exit(0);}

Figure 5.26 The Message Replay Attack

Figure 5.25 The Oversized Filter

www.manaraa.com

71

5.5.4. Coercive Parsing Filter

In Section 4.3.4, we explained the algorithmic procedure, first we get the XML file (SOAP

message) then get the Version of the SOAP message, and there are two SOAP version:

1. SOAP 1.1 : http://schemas.xmlsoap.org/soap/envelope/

2. SOAP 1.2 : http://www.w3.org/2003/05/soap-envelope

We must classify witch version is used in the SOAP message and work depend on the type is

used.

The procedure of checking the version of the SOAP message demonstrated in Figure 5.28. If the

name space of the received SOAP message did not match any expected one of the name spaces.

The SOAP message is rejected.

XPathExpression expr = xpath.compile("/Envelope/Body/GetLastTradePrice/symbol/text()");

 Object result = expr.evaluate(doc, XPathConstants.NODESET);

 NodeList n1 = (NodeList) result;

 for (int i = 0; i < n1.getLength(); i++) {

 input = n1.item(i).getNodeValue(); }

 if (input == null){ System.out.println("The input value is NULL. Reject SOAP message ");

 exit(); }else{System.out.println("the input type is: "+input.getClass()); }

 type = "SUNW";

 if(type.getClass()== input.getClass()){

 System.out.println("the input is from the same type");

 }else { System.out.println("the type of the input is not equal "); } }

Figure 5.27 The Parameter Tampering Filters

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 factory.setNamespaceAware(true);

 DocumentBuilder builder = factory.newDocumentBuilder();

 Document doc = builder.parse("xml.xml");

 String ns = doc.getDocumentElement().getNamespaceURI();

 if (ns=="http://schemas.xmlsoap.org/soap/envelope/"){

 System.out.println("SOAP message version 1.1");}

 else if (ns =="http://www.w3.org/2003/05/soap-envelope"){

 System.out.println("SOAP message version 1.2 ");

 } else if (ns=="http://www.w3.org/2001/06/soap-envelope") {

 System.out.println("SOAP message version 1.2 ");

 }else {System.exit(0);}

Figure 5.28 Coercive Parsing Filter

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2003/05/soap-envelope

www.manaraa.com

72

5.6. Summary

In this chapter we have implemented the proposed approach. First we created the SOAP message

using the SOAP with Attachment API for JAVA (SAAJ), and implement how we add the

attachment (log file) to the SOAP message.

Then we present the steps for creating log file and build the properties file which response of

displaying the logging event. After that we present the structure of the predefined SOAP

message structure based on ontology using the protégé software.

 Furthermore we demonstrate the checking and detection steps used by the ontology checker

component, and how to check the received SOAP message structure. Finally we illustrated the

policy filters, how the checking process implemented to check the received SOAP message

against Web Services SOAP message attacks: Replay attack, Oversized attack, Parameter-

Tampering attack, and Coercive-Parsing attack.

www.manaraa.com

73

 Experimentation and Evaluation Chapter 6

In this chapter, we test the approach through a set of experiments. There are six test cases:

normal case, modified structure case, replay case, parameter-tampering case, oversized case, and

coercive case. We evaluate the approach for integrity and confidentiality and use them as a basis

to compare with other related approaches. Additionally, we evaluate its time efficiency based on

the concurrent execution of the policy filters.

6.1. Experimentation and testing cases

In this section we test the components of our approach, the first test case presents the normal

case which the SOAP message is free of attacks. Secondly we modified the SOAP message in a

malicious manner to test the ability of the ontology checker to determine that there is a tampered

message. Then we illustrate the testing process for the policy filters, and check each filters

against the corresponding attacks, which is four test cases.

6.1.1. Checking Non-modified SOAP message

In this test we aim to prove that the approach work fine in the normal case. So we create a SOAP

message without any malicious content to demonstrate that approach work fine. The testing

SOAP message is presented in Figure 6.1 and the result of the checking process is shown in

Figure 6.2.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>

 <jaxmtst:security xmlns:jaxmtst="http://www.jcommerce.net/soap/jaxm/TestJaxm">

 <jaxmtst:signature>Signed Value<jaxmtst:reference>Refvalue</jaxmtst:reference>

 </jaxmtst:signature>

 </jaxmtst:security>

 <jaxmtst:TimeStamp xmlns:jaxmtst="http://www.jcommerce.net/soap/jaxm/TestJaxm">

 <jaxmtst:creation>2016-01-12T00:56:12.706Z</jaxmtst:creation>

 <jaxmtst:expire>2016-01-12T01:01:12.706Z</jaxmtst:expire>

 </jaxmtst:TimeStamp>

 <jaxmtst:MessageID xmlns:jaxmtst="http://www.jcommerce.net/soap/jaxm/TestJaxm">

 <jaxmtst:ID>IDvalue</jaxmtst:ID>

 </jaxmtst:MessageID>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <m:GetLastTradePrice xmlns:m="http://wombat.ztrade.com">

 <symbol>SUNW</symbol>

 </m:GetLastTradePrice>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

www.manaraa.com

74

6.1.2. Checking the approach against XML Rewriting attack

In this test we aim to modify the SOAP message structure then test the SOAP message using the

ontology checker. The ontology checker checks the SOAP message structure. This checking

process is presented in Section 5.4.

First the ontology checker tests the existence of mandatory elements, then it checks their

positions. Figure 6.3 illustrates a modified SOAP message where the yellow area presents the

modification in the SOAP message, namely, the element of Time-stamp (Creation, Expire) in the

Security section.

Then the ontology checker returns the SOAP message to its original SOAP structure based on

the attached SOAP message in the log file. Figure 6.4 shows the result of catching the

modification and the positions of the modifications. Figure 6.1 illustrates the SOAP message after

being returned to its original structure.

Figure 6.4 Recognizing Time-Stamp modification

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>

 <jaxmtst:security xmlns:jaxmtst="http://www.jcommerce.net/soap/jaxm/TestJaxm">

 <jaxmtst:creation>2015-10-23T15:18:23.421Z</jaxmtst:creation>

 <jaxmtst:expire>2015-10-23T15:23:23.421Z</jaxmtst:expire>

 </jaxmtst:security>

 <jaxmtst:TimeStamp xmlns:jaxmtst="http://www.jcommerce.net/soap/jaxm/TestJaxm">

 </jaxmtst:TimeStamp>

Figure 6.2 Normal Case Result

Figure 6.3 A modified SOAP message

www.manaraa.com

75

6.1.3. Checking the Approach against Replay Attack

Figure 6.5 presents a SOAP message with wrong time (an old time), according to the replay filter

this message must be rejected. We take this old SOAP message and check it using Replay filter.

Figure 6.6 show the result of the testing process. Testing the implementation in Section 5.5.2.

Figure 6.6 Replay attack

6.1.4. Checking the approach against Oversized attack

In this test we put the maximum size of the SOAP message equal 300 byte. This is very small

value but this value depends on the average of the expected SOAP message. We make the SOAP

message exceeding the maximum allowed size, so the Filter rejects the message. The result of

this checking process is demonstrated in Figure 6.7. implementing the checking process for

Section 5.5.1.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>

 <jaxmtst:security xmlns:jaxmtst="http://www.jcommerce.net/soap/jaxm/TestJaxm">

 <jaxmtst:signature>Signed Value<jaxmtst:reference>Refvalue</jaxmtst:reference>

 </jaxmtst:signature>

 </jaxmtst:security>

 <jaxmtst:TimeStamp xmlns:jaxmtst="http://www.jcommerce.net/soap/jaxm/TestJaxm">

 <jaxmtst:creation>2015-10-23T15:18:23.421Z</jaxmtst:creation>

 <jaxmtst:expire>2015-10-23T15:23:23.421Z</jaxmtst:expire>

 </jaxmtst:TimeStamp>

 <jaxmtst:MessageID xmlns:jaxmtst="http://www.jcommerce.net/soap/jaxm/TestJaxm">

Figure 6.5 An Old SOAP message

www.manaraa.com

76

Figure 6.7 Oversized Attack

6.1.5. Checking the approach against Parameter Tampering attack

In this test, we test the input of the SOAP message according to the parameter type. The input

type must be the same as the Web Service is expected to receive, so we test the input of the Body

elements and compare the type of the inputs with the expected one. If there is any change in the

input type the SOAP message is rejected. This checking test the implementation in Section 5.5.3.

Figure 6.8 shows an example testing if the type String is expected as input in the SOAP message.

If any other type is included instead of the String type, the SOAP message is rejected.

Figure 6.8 Parameter Type Test

6.1.6. Checking the approach against Coercive-Parsing attack

In this checking process, we check the SOAP message namespace to identify which SOAP

version this SOAP message applies. SOAP has two versions and each version has its specific

namespaces. Therefore we aim to test SOAP message to determine which version it follows.

www.manaraa.com

77

Figure 6.9 illustrates a modified namespace. So the Coercive parsing filter should detect this as

malicious modification. The result of the detection process is shown in Figure 6.10. This checking

process testing the implementation in Section 5.5.4.

Figure 6.10 Coercive Parsing checking result

6.2. Evaluation

In this section we provide an evaluation for the proposed approach with comparison with other

approaches. The evaluation process depends on three measures specified in research objectives

to be preserved by the approach. These measures are: integrity, confidentiality, and time

efficiency.

6.2.1. Integrity

We defined the integrity as protecting SOAP message from being modified by unauthorized

parties during the transmission process. Every XML rewriting attack performs some sort of

modifications on the SOAP message. By detecting these modifications and in some cases

correcting them, we can preserve integrity. Our approach achieves integrity based on the

ontology predefined SOAP message structure using the ontology checker. The receiver expects

intact SOAP elements same as the originally sent one. If there is any missing elements, this

means there is unauthorized modification. So as we mentioned, the approach needs to check

against the hidden and encrypted SOAP message in the attached log file. If the message does not

comply with the copy in the log file, the approach considers the message as a malicious one.

Therefore this check preserves the integrity of the SOAP message.

More specifically, we define the mandatory elements in the SOAP message such as: Envelope,

Header, Body, Security, Timestamps, MessageID, Creation, and Expire. Also we define the

relation between these mandatory elements, and we classify the XML rewriting attacks using the

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://google.com/modified/soap/envelope/">

 <SOAP-ENV:Header>

 <jaxmtst:security xmlns:jaxmtst="http://www.jcommerce.net/soap/jaxm/TestJaxm">

 <jaxmtst:signature>Signed Value<jaxmtst:reference>Refvalue</jaxmtst:reference></jaxmtst:signature>

 </jaxmtst:security>

Figure 6.9 Coercive Parsing Attack

www.manaraa.com

78

ontology checker, so any modification is classified as malicious and is defined as an attack. So

our approach ensures the following constraints:

- The attacker cannot add a new element in a SOAP message

- The attacker cannot delete an existing element from a SOAP message

- The attacker cannot change the order of the signed elements of a SOAP message

Other approaches tried to preserve the integrity of the SOAP message depending on various

ways such as copying the SOAP message in an element in the header block of the SOAP

message itself [6]. But [23] shows that the main limitation of such an approach is that there is no

unique mechanism to specify the parent in the message while it is an element in the header.

Therefore the attacker can modify the sub elements with parent without violating the validation

process. In our approach, we avoid such a limitation be encrypting the SOAP message in a log

file that is attached to the SOAP message. This is more efficient and better in terms of integrity.

6.2.2. Confidentiality

In any networked system, the communicating parties need to exchange data while guaranteeing

that only the expected receiver can read this data. This means that the exchanged data must be

protected against eavesdroppers. The term confidentiality in the field of information security

refers to the requirement for exchanged data between two communicating parties not to be

available to a third party that may try to pry into the communication (O’Neill et al., 2003). In

order to achieve confidentiality, one approach is to use a private connection between the

communicating parties, such as a dedicated line or a virtual private network (VPN). However,

the critical information of a Web service, such as WSDL and SOAP messages, are usually

exchanged through untrusted networks, the Internet most likely, where the private connection is

not achievable and another approach is used to meet the requirement of confidentiality, which is

encryption.

In SOAP Account and RewritingHealer approaches, the confidentiality depending on signing and

encrypted the elements, to ensure the confidentiality. Also they signing their elements (SOAP

Account, and RewritingHealer) each time and added it to SOAP message.

In our approach, we achieve confidentiality using the encryption. We encrypt the log file, also in

case of sensitive information in the Body. We make Security element as a mandatory element to

allow the signature ability of the body or other elements.

www.manaraa.com

79

6.2.3. Time efficiency

One main advantage of our approach is time efficiency because the ontology checker checks the

message structure just once. In irregular cases the need for decrypting the captured copy is

needed. Also filters are executed in a concurrent manner minimizing time of the filtering process.

To show time efficiency for the ontology checkering, assume that the number of nodes is n, and

the checking time for each node for the element position in the ontology checker is t.

So the time taken by the ontology checker in the regular case is t*n

If we consider the decryption time (i.e., in the irregular case) to be c.

So the ontology checker in such cases is t*n*c and this is the worst case.

We should mention that the time consuming for node position checking is a fixed time. Also the

time for encryption and decryption is fixed. Therefore, the complexity of the checking process is

linear, i.e., O(n) depending on the number of nodes.

This complexity is less than that of the RewritingHealer approach [6], where the header block

has to be checked using a search in a hash table.

It is worth to mention that our proposed approach discard the necessity of using WS Security

[26] for the detection of XML rewriting attack. Where in WS Security each signing and

encryption process take period of time, in our approach there is not any need for signing and un-

signing procedure. Also WS Security Policy [26], each assertion needs to have a module to

verify whether a message satisfies the assertion or not. Therefore if there are assertions in a WS

Security Policy file associated with the different patterns of XML rewriting attack, each of these

assertions will have a modules and each of these modules will have process the message. It is

certainly a time consuming procedure.

The concurrent execution of filters are obviously preserving time. We show this through two

cases: The first case using the multithreaded concurrent procedure for checking SOAP message

and the second case without any concurrency. Figure 6.11 shows the time taken by the concurrent

procedure and Figure 6.12 shows the time taken by the sequential procedure. The two figures

show that the sequential time is 184071123 Nano second while the concurrent time is 5437086

Nano second. Let us calculate the percentage and the speedup equation.

First the time decrease in percentage between the sequential and the concurrent =

(184071123-5437086/184071123)*100= 97% .

Now we need to calculate the speedup equation. Which is (1/1-p) where p is the percentage

between the sequential and concurrent procedure. So

Speedup = (1/1-.97)= 33.33 time.

www.manaraa.com

80

 The result shows that the difference is in nanosecond. But in case we want to handle thousands

of SOAP messages, the difference becomes more significant.

Figure 6.11 Time consumed by the concurrent procedure for filters checking process

Figure 6.12 Non-concurrent procedure for filters checking process

Another advantage of our approach is handling multiple kinds of Web Services SOAP message

attacks. Other approaches are specialized in one or some of these attacks and ignore other kinds.

6.3. Summary

In this chapter, we presented a number of test cases to prove that our approach achieves the

detection and efficient handling of SOAP messages. The cases are divided into six cases; the first

case illustrated a SOAP message without malicious attack. Then we modified the message and

proved that our approach detects this malicious modification. Also we demonstrate four other

checking cases for Web Services SOAP message attacks with one checking case for each filter.

In evaluation section we introduced a brief evaluation process targeting integrity, confidentiality,

and time efficiency. Also we presented a brief comparison with some related approaches.

www.manaraa.com

81

 Conclusion and Recommendations Chapter 7

7.1. Conclusion

The security issue in Web Services depending in the first step on the SOAP message. Therefore,

securing SOAP messages means securing the entire Web Services.

We have built an ontology-based detection approach to detect SOAP message attacks. The

approach consisted of two main parts: the predefined ontology SOAP message part designed to

preserve the SOAP message structure by capturing the message elements and defining the

relationship between these elements. Therefore it was able to detect XML rewriting attacks. The

second part consisted of the policy filters, these filters check if the SOAP Message is vulnerable

to Denial of Services attack.

The ontology is designed to reflect the SOAP message structure based on the original SOAP

elements (mandatory elements) and is used be the ontology checker component to check the

existences and real position of these elements. The ontology checker is designed to check the

structure of the SOAP message and compares it with the predefined ontology based structure to

recognize any missing or modifications happened to the SOAP message during the transmission

process.

The filters started their procedure after the received SOAP message pass ontology checker

procedure. They are responsible for handling four kinds of SOAP message attacks: Oversized

attack, Replay attack, Parameter Tampering attack, and the Coercive parsing attack. The message

is rejected if it do not achieve the restrictions in any one of these filters.

Our approach handles the attacks before reaching the Web Service because it exists in the middle

between the sender and the receiver. It has added new advantages to the SOAP message attack

handling approach. It handle more than one attack and works concurrently to preserve time.

The approach is evaluated for preserving integrity and confidentiality and for ensuring time

efficiency through the concurrent execution of the policy filters. The results show a 33.3 times

improvement of the concurrent execution over the sequential one. Also the approach have proven

to achieve these measure even better than similar approaches.

7.2. Recommendation

As a recommendation, we aim to add new SOAP message Web Services attacks such as cross-

site scripting, also we aim to make our approach adaptable. The adaptability we aim to achieve

as a future work is the ability to cure the SOAP message against any missing or modification in

its structure. The ontology can be further extends to be used in the filtering process.

The approach needs to be implemented as a complete sub-system in any SOAP engine for Web

Services and this needs a complete implementation of the approach.

www.manaraa.com

82

Bibliography

[1] L. Liberti, "CA Survey Finds Security Concerns Slow SOA/Web Service Implementation,"

CA Advisor Security Management Newsletter, 2009.

[2] A. Nadalin, C. Kaler, Hallam-Baker, PH. and R. Mozillo, "Web Services Security: SOAP

Message Security 1.0," http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-

message-security-1.0.pdf, , OASIS Standard 200401, March, 2004.

[3] M. McIntosh and P. Austel, "XML Signature Element Wrapping Attacks and

Countermeasures," in Proceedings of the International Workshop on Secure Web Services

(SWS);, Fairfax, VA, USA, Nov, 2005.

[4] W. W. W. consortiim, "Web Service Architecture Requirments,"

http://www.w3c.org/TR/wsa-reqs/, 2008.

[5] N. Aziz, B. Jeong-Yong and P. Young-Ho, "a study on Detection Techniques of XML

Rewriting Attacks in Web Services," International Journal of Control and Automation, vol.

7, 2014.

[6] F. A. Kadir, "RewritingHealer: An Approach for securing Web Services Communication,"

Master Thesis in KTH Royal Institute of Technology, vol. Sweden, 2008.

[7] K. Bhargavan, C. Fournet, A. D. Gordon and G. O'Shea, "An Advisor for Web Services

Security Policies, SWS`05,," Fairfax, Virginia, USA, 2005.

[8] U. Elangovan and K. Arputharaj, "Improving cross site scripting filters for input validation

against attacks in Web Services," Kuwait J. Sci. 41(2), pp. 175-203, 2014.

[9] C. Dan, v. H. Frank, H. Ian, L. M. Deborah, F. ,.-S. Peter and A. S. Lynn, DAML + OIL

(March 2001) Reference Description, http://www.w3.org/TR/daml+oil-reference, 2001.

[10] D. L. McGuiness, "Conceptual Modeling for Distributed Ontology Environments," in . In

the Proceedings of The Eighth International Conference on Conceptual Structures in

Logical, Linguistic, and CompuatationalIssues (ICCS 2000), Darmstadt, Germany, 2000.

[11] J. Hendler and E. Miller, Web Ontology Language, http://www.w3.org/2004/OWL/, 2004.

[12] Beckett and David, RDF/XML Syntax Specification (Revised)., http://www.w3.org/TR/rdf-

syntax-grammar/, Feb 2004.

[13] M. K. Smith, C. Welty and D. L. McGuinness, OWL Web Ontology Language Guide,

http://www.w3.org/TR/owl-guide/, 2004.

[14] X. Wang, Q. ,. Da, G. Tao and H. Pung, Ontology Based Context Modeling and Reasoning

www.manaraa.com

83

using OWL., 2004.

[15] M. A., M. B. and S. L., "Managing Multiple Distributed Ontologies in the Semantic Web,"

VLDB Journal, pp. 286-302, 2003.

[16] P. Boyce, "Developing Domain Ontologies For Course Content," Educational Technology

& Society, pp. 275-288, 10 (3) 2007.

[17] Rebekah Gilmour, "An ontology for Hazard Identification in Risk Management,"

Department of Chemical Engineering, 2004.

[18] U. Mike and G. Micheal, "Ontologies: Principle, Methods and applications," Knowledge

Engineering Review, February 1996.

[19] B. McBride, "Jena: A Semantic Web Toolkit," IEEE Computer Sociaty, pp. 55-59,

November 2002.

[20] E. Moradian and A. Hakansson, "Possible Attacks on XML Web Services," vol. Vol. 6, pp.

154-170, 2006.

[21] M. A. Rahman, A. Schaad and M. Rits, "Towards Secure SOAP message Exchange in a

SOA," Proceedings of the secure Web Services Workshop, no. Fairfax, USA, pp. 77-84,

2006.

[22] M. A. Rahaman and A. Schaad, "SOAP-Based Secure Conversation and Collaboration,"

International Conference on Web Services (ICWS), no. Los Angeles, CA, USA, 2009.

[23] S. Gajek, L. Liao and J. Schwenk, "Breaking and Fixing the Inline Approach," Proceeding

of the ACM Workshop on Secure Web Services (SWS), no. Los Angeles, CA, USA, 2008.

[24] T. S. Barhoom and R. S. K. Rasheed, "Position of Signed Element for SOAP Message

Integrity," International Journal of Computer Information Systems, vol. 2, no. 4, 2011.

[25] S. Anderson and a. e. al, "web services trust language, (WS-Trust),," WS-trust, 2005.

[26] S. Anderson and a. e. al, "web services secure conversation language,"

http://schemas.xmlsoap.org/ws/2005/02/sc, 2005.

[27] M. Rajni and D. Deepak, "A Proposed SOAP Model Against Wrapping and Issue

Conversation," International Journal of Computer Science Issues, vol. 10, no. 2, p. 3, March

2013.

[28] S. Gajek, M. Jensen, L. Liao and J. , "analysis the Signature Wrapping attacks and

Countermeasure," in the Proc of IEEE International Conference on Web Services, ICWS,

Los Anglese, CA, pp. 575-582, 2009.

www.manaraa.com

84

[29] S. K. Sinh and A. Benameur, "A Formal Solution to Rewriting Attack on SOAP Message,"

in Proc of ACM workshop on Secure Web Services SWS`08 ACM New Yourk, NY, USA, pp.

53-60, 2008.

[30] V. Patel, R. Mohandas and A. R. Pais, "Attacks on Web Services and Mitigation Schemas,"

International Journal of Computer Engineering, vol. 3, no. 5, 2010.

[31] A. Nasridinov and J. Y. Byun, "A Self-Adaptive Approach to Ensure Integrity of SOAP

Message," 2012.

[32] N. Aziz, P. H. Pham, Q. Lin and Y. B. Jeong, "XAT-SOAP: XML-based attack-tolerent

SOAP Message," 2012.

[33] A. Nasridinov, J. Y. Byun and Y.-H. Park, "UNRWAP: an approach on wrapping-attack

tolerant SOAP Message," Second International Conference on Cloud and Green

Computing, 2012.

[34] G. ,. Chan, H. S. Wong and G. Rao, "an Adaptive Intrusion Detection and Prevention

(ID/IP) Framwork for Web Service," Proc. Int`1 Conf. Convergence Information

Technology, IEEE, pp. 528-534, 2007.

[35] D. Shipra, B. Suman and T. Deepika, "Security Issues in cloud Computing and

Countermeasures," International Journal of Engineering Science and Technology (IJEST),

2011.

[36] Thilagam, A. N. Gupta and D. P. Santhi, "Attacks on Web Services Need to Secure XML on

Web," Computer Science & Engineering: an International Journal (CSEIJ), vol. 3, p. 5,

October 2013.

[37] I. B. Mohamed and S. ,. R. Dr. Mohamed, "Server SOA Security Threats on SOAP Web

Services-A Critical Analysis," ISOR Juornal of Computer Engineering (ISOR-JCE), vol. 16,

no. 2, Mar-Apr 2014.

[38] A. V. a. J. Han, "Security Attack ontology for web service," in proceeding of the second

International Conference on Semantics, Knowledge, and Grid, IEEE, 2006.

[39] M. Jensen, N. Gruschka and R. Herkenhoner, "A survey of attack on Web Services,"

Computer Science- Research and Developmemt, pp. 185-197, November 2009.

[40] R. K. Swati and D. Aarti, "A Survey On XML-Injection Attacks Detection Systems,"

International Journal of Science and Research (IJSR), vol. 3, no. 5, May 2014.

[41] A. N. Gupta and S. Thilagam, "Attacks ON Web Services Need to Secure XML On Web,"

Computer Science & Engineering: An International Journal (CSEIJ), vol. Vol. 3, no. No. 5,

October 2013.

www.manaraa.com

85

[42] W. Negm, "Anatomy of Web Services Attack: A guide to threat and preventive

Countermeasures," Forum Systems Inc, 2004.

[43] J. Meiko, G. Nils and H. Ralph, "A survey of attack on Web Services," Computer Science-

Research and Developmemt Volume 24, Number 4, pp. 185-197, 2009.

[44] M. Ficco and M. Rak, "Intrusion Tolerant Approach for Denial of Service Attacks to Web

Services," First International Conference on Data Compression, Communications and

Processing, pp. 285-292, 2011.

[45] S. w. A. A. f. Java, "https://docs.oracle.com/javaee/5/tutorial/doc/bnbhg.html," SUN

Microsoft, July 2005. [Online].

[46] S. B. Palmer, The Semantic Web: An Introduction, http://infomesh.net/2001/swintro/, 2001.

[47] "The World Wide Web Consortium," [Online]. Available: http://www.w3.org/ .

[48] M. McIntosh and P. Austel, "XML Signature Element Wrapping attacks and

Countermeasures," in Proceedings of the International Workshop on Secure Web services

(SWS), Fairfax, VA, USA, 2005.

[49] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler and F. Yergeau, Extensible Markup

Language (XML) 1.0 (Third Edition), http://www.w3.org/TR/2004/REC-xml-20040204/,

2004.

[50] G.-C. Javier, T. David and B. Claudio, "Description Logics for Matchmaking of Services.,"

Hewlett-Packard Company Technical Report, 2001.

[51] K. Holger, W. F. Ray, F. N. Natalya and A. M. Mark, "The Protégé OWL Plugin: An Open

Development Environment for Semantic Web Applications," ISWC, 2004.

[52] C. Trim, "Jena: A Semantic Web Framework," 2013. [Online]. Available: http://trimc-

nlp.blogspot.com/2013/06/introduction-to-jena.html.

www.manaraa.com

86

Appendixes
Appendix 1: The SOAP Structure Ontology in OWL Format:

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

 <!ENTITY SOAP "http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#" >

]>

<rdf:RDF xmlns="http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#"

 xml:base="http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:SOAP="http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#">

 <owl:Ontology rdf:about="http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah"/>

 <!--

 ///

 //

 // Object Properties

 //

 ///

 -->

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#ChildOf -->

 <owl:ObjectProperty rdf:about="&SOAP;ChildOf">

 <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

 <owl:inverseOf rdf:resource="&SOAP;ParentOf"/>

 </owl:ObjectProperty>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#ParentOf -->

 <owl:ObjectProperty rdf:about="&SOAP;ParentOf">

 <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

 </owl:ObjectProperty>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#Unique -->

 <owl:ObjectProperty rdf:about="&SOAP;Unique">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 </owl:ObjectProperty>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#hasNode -->

 <owl:ObjectProperty rdf:about="&SOAP;hasNode">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 </owl:ObjectProperty>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#isExist -->

 <owl:ObjectProperty rdf:about="&SOAP;isExist">

 <rdf:type rdf:resource="&owl;FunctionalProperty"/>

 </owl:ObjectProperty>

 <!--

 ///

 //

 // Classes

 //

 ///

 -->

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#Body -->

www.manaraa.com

87

 <owl:Class rdf:about="&SOAP;Body">

 <rdfs:subClassOf rdf:resource="&SOAP;SOAP_Message"/>

 </owl:Class>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#Creation -->

 <owl:Class rdf:about="&SOAP;Creation">

 <rdfs:subClassOf rdf:resource="&SOAP;SOAP_Message"/>

 </owl:Class>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#Envelope -->

 <owl:Class rdf:about="&SOAP;Envelope">

 <rdfs:subClassOf rdf:resource="&SOAP;SOAP_Message"/>

 </owl:Class>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#Expire -->

 <owl:Class rdf:about="&SOAP;Expire">

 <rdfs:subClassOf rdf:resource="&SOAP;SOAP_Message"/>

 </owl:Class>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#Header -->

 <owl:Class rdf:about="&SOAP;Header">

 <rdfs:subClassOf rdf:resource="&SOAP;SOAP_Message"/>

 </owl:Class>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#MessageID -->

 <owl:Class rdf:about="&SOAP;MessageID">

 <rdfs:subClassOf rdf:resource="&SOAP;SOAP_Message"/>

 </owl:Class>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#SOAP_Case -->

 <owl:Class rdf:about="&SOAP;SOAP_Case"/>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#SOAP_Message -->

 <owl:Class rdf:about="&SOAP;SOAP_Message"/>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#Security -->

 <owl:Class rdf:about="&SOAP;Security">

 <rdfs:subClassOf rdf:resource="&SOAP;SOAP_Message"/>

 </owl:Class>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#TimeStamp -->

 <owl:Class rdf:about="&SOAP;TimeStamp">

 <rdfs:subClassOf rdf:resource="&SOAP;SOAP_Message"/>

 </owl:Class>

 <!--

 ///

 //

 // Individuals

 //

 ///

 -->

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#Body -->

 <owl:NamedIndividual rdf:about="&SOAP;Body">

 <rdf:type rdf:resource="&SOAP;Body"/>

 <rdf:type rdf:resource="&SOAP;SOAP_Message"/>

 <Unique rdf:resource="&SOAP;Body"/>

 <ChildOf rdf:resource="&SOAP;Envelope"/>

 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#Creation -->

 <owl:NamedIndividual rdf:about="&SOAP;Creation">

 <rdf:type rdf:resource="&SOAP;Creation"/>

 <rdf:type rdf:resource="&SOAP;SOAP_Message"/>

 <isExist rdf:resource="&SOAP;Creation"/>

www.manaraa.com

88

 <ChildOf rdf:resource="&SOAP;TimeStamp"/>

 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#Envelope -->

 <owl:NamedIndividual rdf:about="&SOAP;Envelope">

 <rdf:type rdf:resource="&SOAP;Envelope"/>

 <rdf:type rdf:resource="&SOAP;SOAP_Message"/>

 <ParentOf rdf:resource="&SOAP;Body"/>

 <ParentOf rdf:resource="&SOAP;Header"/>

 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#Expire -->

 <owl:NamedIndividual rdf:about="&SOAP;Expire">

 <rdf:type rdf:resource="&SOAP;Expire"/>

 <rdf:type rdf:resource="&SOAP;SOAP_Message"/>

 <ChildOf rdf:resource="&SOAP;TimeStamp"/>

 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#Header -->

 <owl:NamedIndividual rdf:about="&SOAP;Header">

 <rdf:type rdf:resource="&SOAP;Header"/>

 <rdf:type rdf:resource="&SOAP;SOAP_Message"/>

 <ChildOf rdf:resource="&SOAP;Envelope"/>

 <ParentOf rdf:resource="&SOAP;MessageID"/>

 <ParentOf rdf:resource="&SOAP;Security"/>

 <ParentOf rdf:resource="&SOAP;TimeStamp"/>

 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#MessageID -->

 <owl:NamedIndividual rdf:about="&SOAP;MessageID">

 <rdf:type rdf:resource="&SOAP;MessageID"/>

 <rdf:type rdf:resource="&SOAP;SOAP_Message"/>

 <ChildOf rdf:resource="&SOAP;Header"/>

 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#SOAP_Attack1 -->

 <owl:NamedIndividual rdf:about="&SOAP;SOAP_Attack1">

 <rdf:type rdf:resource="&SOAP;SOAP_Case"/>

 <hasNode rdf:resource="&SOAP;Body"/>

 <hasNode rdf:resource="&SOAP;Envelope"/>

 <hasNode rdf:resource="&SOAP;Header"/>

 <hasNode rdf:resource="&SOAP;MessageID"/>

 <hasNode rdf:resource="&SOAP;Security"/>

 <hasNode rdf:resource="&SOAP;TimeStamp"/>

 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#SOAP_Attack2 -->

 <owl:NamedIndividual rdf:about="&SOAP;SOAP_Attack2">

 <rdf:type rdf:resource="&SOAP;SOAP_Case"/>

 <hasNode rdf:resource="&SOAP;Body"/>

 <hasNode rdf:resource="&SOAP;Creation"/>

 <hasNode rdf:resource="&SOAP;Envelope"/>

 <hasNode rdf:resource="&SOAP;Expire"/>

 <hasNode rdf:resource="&SOAP;Header"/>

 <hasNode rdf:resource="&SOAP;Security"/>

 <hasNode rdf:resource="&SOAP;TimeStamp"/>

 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#SOAP_Attack3 -->

 <owl:NamedIndividual rdf:about="&SOAP;SOAP_Attack3">

 <rdf:type rdf:resource="&SOAP;SOAP_Case"/>

 <hasNode rdf:resource="&SOAP;Body"/>

 <hasNode rdf:resource="&SOAP;Envelope"/>

 </owl:NamedIndividual>

www.manaraa.com

89

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#SOAP_Attack4 -->

 <owl:NamedIndividual rdf:about="&SOAP;SOAP_Attack4">

 <rdf:type rdf:resource="&SOAP;SOAP_Case"/>

 <hasNode rdf:resource="&SOAP;Creation"/>

 <hasNode rdf:resource="&SOAP;Envelope"/>

 <hasNode rdf:resource="&SOAP;Expire"/>

 <hasNode rdf:resource="&SOAP;Header"/>

 <hasNode rdf:resource="&SOAP;MessageID"/>

 <hasNode rdf:resource="&SOAP;Security"/>

 <hasNode rdf:resource="&SOAP;TimeStamp"/>

 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#SOAP_Attack5 -->

 <owl:NamedIndividual rdf:about="&SOAP;SOAP_Attack5">

 <rdf:type rdf:resource="&SOAP;SOAP_Case"/>

 <hasNode rdf:resource="&SOAP;Body"/>

 <hasNode rdf:resource="&SOAP;Creation"/>

 <hasNode rdf:resource="&SOAP;Expire"/>

 <hasNode rdf:resource="&SOAP;Header"/>

 <hasNode rdf:resource="&SOAP;MessageID"/>

 <hasNode rdf:resource="&SOAP;Security"/>

 <hasNode rdf:resource="&SOAP;TimeStamp"/>

 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#SOAP_Normal -->

 <owl:NamedIndividual rdf:about="&SOAP;SOAP_Normal">

 <rdf:type rdf:resource="&SOAP;SOAP_Case"/>

 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#Security -->

 <owl:NamedIndividual rdf:about="&SOAP;Security">

 <rdf:type rdf:resource="&SOAP;SOAP_Message"/>

 <rdf:type rdf:resource="&SOAP;Security"/>

 <ChildOf rdf:resource="&SOAP;Header"/>

 </owl:NamedIndividual>

 <!-- http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#TimeStamp -->

 <owl:NamedIndividual rdf:about="&SOAP;TimeStamp">

 <rdf:type rdf:resource="&SOAP;SOAP_Message"/>

 <rdf:type rdf:resource="&SOAP;TimeStamp"/>

 <ParentOf rdf:resource="&SOAP;Creation"/>

 <ParentOf rdf:resource="&SOAP;Expire"/>

 <ChildOf rdf:resource="&SOAP;Header"/>

 </owl:NamedIndividual>

</rdf:RDF>

<!-- Generated by the OWL API (version 3.5.0) http://owlapi.sourceforge.net -->

www.manaraa.com

90

Appendix 2: SOAP Creation Code

import org.apache.log4j.Logger;

import org.apache.log4j.PropertyConfigurator;

import org.apache.log4j.BasicConfigurator;

import org.apache.log4j.ConsoleAppender;

import org.apache.log4j.PatternLayout;

//import junit.framework.TestCase;

import java.io.BufferedWriter;

import javax.xml.soap.*;

import javax.activation.DataHandler;

import javax.activation.FileDataSource;

import java.text.DateFormat;

import java.io.ByteArrayOutputStream;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.FileWriter;

import java.io.InputStream;

import java.io.OutputStream;

import java.net.URL;

import java.util.Iterator;

import java.util.logging.FileHandler;

import java.util.logging.Handler;

import javax.xml.transform.OutputKeys;

import javax.xml.transform.Source;

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.stream.StreamResult;

import java.text.SimpleDateFormat;

import java.util.TimeZone;

/**

 *

 * @author Mahmoud Hamouda

 */

public class Test {

 private final static Logger logger = Logger.getLogger(Test.class);

 public static String MIME_MULTIPART_RELATED = "multipart/related";

 public static String MIME_APPLICATION_DIME = "application/dime";

 public static String NS_PREFIX = "jaxmtst";

 public static String NS_URI = "http://www.jcommerce.net/soap/jaxm/TestJaxm";

 public static String getSOAPMessageAsString(SOAPMessage soapMessage) {

 try {

 TransformerFactory tff = TransformerFactory.newInstance();

 Transformer tf = tff.newTransformer();

 // Set formatting

 tf.setOutputProperty(OutputKeys.INDENT, "yes");

 tf.setOutputProperty("{http://xml.apache.org/xslt}indent-amount","2");

 Source sc = soapMessage.getSOAPPart().getContent();

 ByteArrayOutputStream streamOut = new ByteArrayOutputStream();

 StreamResult result = new StreamResult(streamOut);

 tf.transform(sc, result);

 String strMessage = streamOut.toString();

 return strMessage;

 } catch (Exception e) {

 System.out.println("Exception in getSOAPMessageAsString "

 + e.getMessage());

 return null;} }

www.manaraa.com

91

 public static void main(String[] args) throws SOAPException {

 try{

 //This is used to get time in SOAP request in yyyy-MM-dd'T'HH:mm:ss.SSS'Z' format

 SimpleDateFormat formatter = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:dd.SSS'Z'");

 formatter.setTimeZone(TimeZone.getTimeZone("GMT"));

 //This is for TimeStamp element value

 java.util.Date create = new java.util.Date();

 java.util.Date expires = new java.util.Date(create.getTime() + (5l * 60l * 1000l));

 PropertyConfigurator.configure("loger.properties");

 // BasicConfigurator.configure();

 logger.debug("message creation ");

 //Create a SOAPConnection

 SOAPConnectionFactory factory =

 SOAPConnectionFactory.newInstance();

 SOAPConnection connection =

 factory.createConnection();

 //create the message and the connection

 MessageFactory mf = MessageFactory.newInstance();

 SOAPMessage msg = mf.createMessage();

 //msg.setProperty(SOAPMessage.WRITE_XML_DECLARATION ,Boolean.TRUE);

 logger.info("SOAPPart creation");

 SOAPPart soapPart = msg.getSOAPPart();

 logger.info("Envelope creation");

 SOAPEnvelope envelope = soapPart.getEnvelope();

 logger.info("header creation");

 SOAPHeader header = envelope.getHeader();

 logger.info("body creation");

 SOAPBody body = envelope.getBody();

 logger.info("security header creation");

 // header create

 SOAPHeaderElement security = header.addHeaderElement(envelope.createName("security", NS_PREFIX, NS_URI));

 // security.setActor();

 logger.info("signature creation");

 // signature

 SOAPElement signature = security.addChildElement("signature", NS_PREFIX);

 signature.addTextNode("Signed Value");

 logger.info("reference creation");

 //reference

 SOAPElement reference = signature.addChildElement("reference", NS_PREFIX);

 reference.addTextNode("Refvalue");

 logger.info("time creation");

 //time stamp

 //Adding Timestamp

 SOAPHeaderElement Time = header.addHeaderElement(envelope.createName("TimeStamp",NS_PREFIX ,NS_URI));

 SOAPElement creation = Time.addChildElement("creation",NS_PREFIX);

 creation.addTextNode(formatter.format(create));

 SOAPElement expire = Time.addChildElement("expire",NS_PREFIX);

 expire.addTextNode(formatter.format(expires));

 logger.info("messageID element creation");

 //message id

 SOAPHeaderElement MsgID = header.addHeaderElement(envelope.createName("MessageID",NS_PREFIX ,NS_URI));

 SOAPElement ID = MsgID.addChildElement("ID",NS_PREFIX);

 ID.addTextNode("IDvalue");

 logger.info("body element creation");

 //body element

 //Create a SOAPBodyElement

 Name bodyName = envelope.createName("GetLastTradePrice", "m", "http://wombat.ztrade.com");

www.manaraa.com

92

 SOAPBodyElement bodyElement = body.addBodyElement(bodyName);

 //Insert Content

 Name name = envelope.createName("symbol");

 SOAPElement symbol = bodyElement.addChildElement(name);

 symbol.addTextNode("SUNW");

// add attachment

 logger.info("attachment creation --");

 File myfile = new File("admin.txt");

 FileDataSource fds = new FileDataSource(myfile);

 DataHandler dh = new DataHandler(fds);

 AttachmentPart ap2 = msg.createAttachmentPart(dh);

 ap2.setContentId("attachment");

 msg.addAttachmentPart(ap2);

 MimeHeaders headers = msg.getMimeHeaders();

 //assertTrue(headers != null);

 String [] contentType = headers.getHeader("Content-Type");

 //assertTrue(contentType != null);

 // create the file

 String st = getSOAPMessageAsString(msg) ;

 System.out.print(st);

 File file = new File("soap.xml");

 FileOutputStream out = new FileOutputStream(file);

 msg.writeTo(out);

 File newFile = new File("newone.xml");

 FileOutputStream str = new FileOutputStream(newFile);

 if (!newFile.exists()) {

 newFile.createNewFile();

 }

 byte[] contentInBytes = st.getBytes();

 str.write(contentInBytes);

 str.flush();

 str.close();

 }catch (Exception e) {

 System.out.println(e.getMessage());

 }

 }

 }

www.manaraa.com

93

Appendix 3: Policy Filters Code

import java.io.File;

import java.io.IOException;

import java.text.ParseException;

import java.text.SimpleDateFormat;

import java.util.Locale;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import javax.xml.xpath.XPath;

import javax.xml.xpath.XPathConstants;

import javax.xml.xpath.XPathExpression;

import javax.xml.xpath.XPathExpressionException;

import javax.xml.xpath.XPathFactory;

import org.w3c.dom.Document;

import org.w3c.dom.NodeList;

import org.xml.sax.SAXException;

public class FiltersThread {

 public static void main (String [] args){

 Replay replay = new Replay();

 Thread rep = new Thread(replay);

 rep.start();

 Parameter parameter = new Parameter();

 Thread t1 = new Thread (parameter);

 t1.start();

 OverSized over = new OverSized();

 Thread t2 = new Thread(over);

 t2.start();

 Parsing parse = new Parsing();

 Thread t3 = new Thread(parse);

 t3.start();

 }

}

class Replay implements Runnable{

public static String msgDate;

 @Override

 public void run() {

 try {

 replaymethod();

 } catch (ParserConfigurationException ex) {

 Logger.getLogger(Replay.class.getName()).log(Level.SEVERE, null, ex);

 } catch (SAXException ex) {

 Logger.getLogger(Replay.class.getName()).log(Level.SEVERE, null, ex);

 } catch (IOException ex) {

 Logger.getLogger(Replay.class.getName()).log(Level.SEVERE, null, ex);

 } catch (XPathExpressionException ex) {

 Logger.getLogger(Replay.class.getName()).log(Level.SEVERE, null, ex);

 } catch (ParseException ex) {

 Logger.getLogger(Replay.class.getName()).log(Level.SEVERE, null, ex);

 }

 }

www.manaraa.com

94

 public void replaymethod() throws ParserConfigurationException, SAXException, IOException, XPathExpressionException,

ParseException{

 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = factory.newDocumentBuilder();

 Document doc = builder.parse("xml.xml");

 XPathFactory xPathfactory = XPathFactory.newInstance();

 XPath xpath = xPathfactory.newXPath();

 XPathExpression expr = xpath.compile("/Envelope/Header/TimeStamp/expire/text()");

 Object result = expr.evaluate(doc, XPathConstants.NODESET);

 NodeList n1 = (NodeList) result;

 for (int i = 0; i < n1.getLength(); i++) {

 msgDate = n1.item(i).getNodeValue();

 if (msgDate ==null){

 String empty = " The Expire Node Value is Missing. Reject the SOAP Message ";

 System.out.println(empty);

 System.exit(0);

 } }

 SimpleDateFormat ISO8601DATEFORMAT = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:dd.SSS'Z'",

Locale.US);

 java.util.Date date = new java.util.Date();

 String dateToday = ISO8601DATEFORMAT.format(date);

 java.util.Date expireTime = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:dd.SSS'Z'", Locale.US)

 .parse(msgDate);

 java.util.Date currentTime = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:dd.SSS'Z'", Locale.US)

 .parse(dateToday);

 if (expireTime.compareTo(currentTime) > 0) {

 String rsult = "Expire Time is more than Current Time, TimeStamp is right";

 System.out.println(rsult);

 } else if (expireTime.compareTo(currentTime) < 0) {

 String rsult ="Expire time is less than Current Time, Message Reject";

 System.out.println(rsult);

 System.exit(0);

 } else if (expireTime.compareTo(currentTime) == 0) {

 String rsult ="Expire Time is Equal Current Time, Message Reject";

 System.out.println(rsult);

 } else {

 String rsult ="Something weird happened...";

 System.out.println(rsult);

 System.exit(0);

 }

 }

 }

class Parameter implements Runnable{

 public static Object input ;

 public static Object type;

 @Override

 public void run() {

 try {

 parameterTampering();

 } catch (ParserConfigurationException ex) {

 Logger.getLogger(Parameter.class.getName()).log(Level.SEVERE, null, ex);

 } catch (SAXException ex) {

 Logger.getLogger(Parameter.class.getName()).log(Level.SEVERE, null, ex);

 } catch (IOException ex) {

 Logger.getLogger(Parameter.class.getName()).log(Level.SEVERE, null, ex);

 } catch (XPathExpressionException ex) {

 Logger.getLogger(Parameter.class.getName()).log(Level.SEVERE, null, ex);

 }

www.manaraa.com

95

 }

 public void parameterTampering() throws ParserConfigurationException, SAXException, IOException,

XPathExpressionException{

 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = factory.newDocumentBuilder();

 Document doc = builder.parse("xml.xml");

 XPathFactory xPathfactory = XPathFactory.newInstance();

 XPath xpath = xPathfactory.newXPath();

 XPathExpression expr = xpath.compile("/Envelope/Body/GetLastTradePrice/symbol/text()");

 Object result = expr.evaluate(doc, XPathConstants.NODESET);

 NodeList n1 = (NodeList) result;

 for (int i = 0; i < n1.getLength(); i++) {

 input = n1.item(i).getNodeValue(); }

 if (input == null){

 String rslt = "The input value is NULL. Reject SOAP Message ";

 System.out.println(rslt);

 System.exit(0);

 }else{System.out.println("the input type is: "+input.getClass()); }

 type = "SUNW";

 if(type.getClass()== input.getClass()){

 System.out.println("the input is from the same type");

 }else { System.out.println("the type of the input is not equal "); }

 }

}

class OverSized implements Runnable{

 public static double over ;

 @Override

 public void run() {

 overSizedFilter();

 }

 public void overSizedFilter(){

 File file =new File("xml.xml");

 over = 1800;

 double size = file.length();

 if (size <= over){

 String result = "Thm Message is less than the maximum Size";

 System.out.println(result);

 }else{

 String result = "Reject the SOAP Message (OverSize Attack)";

 System.out.println(result);

 System.exit(0);

 }

 }

}

class Parsing implements Runnable{

 @Override

 public void run() {

 try {

 coerciveParsing();

 } catch (ParserConfigurationException ex) {

 Logger.getLogger(Parsing.class.getName()).log(Level.SEVERE, null, ex);

 } catch (SAXException ex) {

 Logger.getLogger(Parsing.class.getName()).log(Level.SEVERE, null, ex);

 } catch (IOException ex) {

 Logger.getLogger(Parsing.class.getName()).log(Level.SEVERE, null, ex);

 }

 }

www.manaraa.com

96

 public void coerciveParsing()throws ParserConfigurationException, SAXException, IOException{

 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 factory.setNamespaceAware(true);

 DocumentBuilder builder = factory.newDocumentBuilder();

 Document doc = builder.parse("xml.xml");

 String ns = doc.getDocumentElement().getNamespaceURI();

 //System.out.println(ns);

 String version = null;

 if (ns=="http://schemas.xmlsoap.org/soap/envelope/"){

 version = "SOAP message version 1.1";

 System.out.println(version);

 }

 else if (ns =="http://www.w3.org/2003/05/soap-envelope"){

 version = "SOAP message version 1.2 ";

 System.out.println(version);

 } else if (ns=="http://www.w3.org/2001/06/soap-envelope") {

 version = "SOAP message version 1.2 ";

 System.out.println(version);

 }else {System.exit(0);}

 }}

www.manaraa.com

97

Appendix 4: The Ontology Checker Code

import com.hp.hpl.jena.query.Query;

import com.hp.hpl.jena.query.QueryExecution;

import com.hp.hpl.jena.query.QueryExecutionFactory;

import com.hp.hpl.jena.query.QueryFactory;

import com.hp.hpl.jena.query.QuerySolution;

import com.hp.hpl.jena.query.ResultSetFactory;

import com.hp.hpl.jena.query.ResultSetRewindable;

import com.hp.hpl.jena.rdf.model.InfModel;

import com.hp.hpl.jena.rdf.model.Model;

import com.hp.hpl.jena.rdf.model.ModelFactory;

import com.hp.hpl.jena.rdf.model.RDFNode;

import com.hp.hpl.jena.reasoner.Reasoner;

import com.hp.hpl.jena.reasoner.rulesys.RDFSRuleReasonerFactory;

import com.hp.hpl.jena.util.FileManager;

import java.io.File;

import java.io.IOException;

import java.util.ArrayList;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import javax.xml.xpath.XPath;

import javax.xml.xpath.XPathConstants;

import javax.xml.xpath.XPathExpression;

import javax.xml.xpath.XPathExpressionException;

import javax.xml.xpath.XPathFactory;

import org.apache.jena.iri.impl.Main;

import org.w3c.dom.Document;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

import org.xml.sax.SAXException;

public class FinalFilters {

 public static ArrayList TimeStamp = new ArrayList();

 public static ArrayList OntTime = new ArrayList();

 public static ArrayList header = new ArrayList();

 public static ArrayList OntHeader = new ArrayList();

 public static ArrayList envelop = new ArrayList();

 public static ArrayList Ontenvelop = new ArrayList();

 public static ArrayList array = new ArrayList();

 public static ArrayList OntologyArr = new ArrayList();

 public static String [] toString ;

 public static String mem;

 public static String s ;

 public static void getAll() throws ParserConfigurationException, SAXException, IOException{

 DocumentBuilderFactory docBuilderFactory = DocumentBuilderFactory

 .newInstance();

 DocumentBuilder docBuilder = docBuilderFactory.newDocumentBuilder();

 Document document = docBuilder.parse(new File("xml.xml"));

 NodeList nodeList = document.getElementsByTagName("*");

 for (int i = 0; i < nodeList.getLength(); i++) {

 Node node = nodeList.item(i);

 if (node.getNodeType() == Node.ELEMENT_NODE) {

 String elements = node.getNodeName().substring(9);

 array.add(elements);

 }

 }

 FileManager.get().addLocatorClassLoader(Main.class.getClassLoader());

www.manaraa.com

98

 Model model = FileManager.get().loadModel("E:\\xml research\\doctor\\ontology\\mah.owl");

 Reasoner reasoner = RDFSRuleReasonerFactory.theInstance().create(null);

 InfModel inf = ModelFactory.createInfModel(reasoner, model);

 String mem1 = ("PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" +

 "PREFIX owl: <http://www.w3.org/2002/07/owl#>\n" +

 "PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n" +

 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>\n" +

 "PREFIX SOAP: <http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#>\n" +

 "SELECT ?a ?t ?x\n" +

 " WHERE { ?a rdf:type SOAP:SOAP_Message.}");

 Query query = QueryFactory.create(mem1);

 QueryExecution agri = QueryExecutionFactory.create(query, inf);

 ResultSetRewindable results = ResultSetFactory.makeRewindable(agri.execSelect());

 while (results.hasNext()){

 QuerySolution qs = results.nextSolution();

 RDFNode a1 = qs.get("a");

 String[] b2 = a1.toString().split("\\^\\^http://www.w3.org/2001/XMLSchema#string");

 mem = b2[0].substring(65);

 OntologyArr.add(mem);

 }

 for (int i =0; i<=7; i++){

 String member = (String) OntologyArr.get(i);

 if (array.contains(member)){

 } else {System.out.println("the element "+member+" is missing");}

 }

 System.out.println("All the mandatory element are exist ");

 }

 public static void envelopChild() throws ParserConfigurationException, SAXException, IOException,

XPathExpressionException{

 DocumentBuilderFactory docBuilderFactory = DocumentBuilderFactory

 .newInstance();

 DocumentBuilder docBuilder = docBuilderFactory.newDocumentBuilder();

 Document document = docBuilder.parse(new File("xml.xml"));

 XPathFactory xPathfactory = XPathFactory.newInstance();

 XPath xpath = xPathfactory.newXPath();

 XPathExpression expr = xpath.compile("/Envelope/*");

 Object result = expr.evaluate(document, XPathConstants.NODESET);

 NodeList n1 = (NodeList) result;

 for (int i = 0; i < n1.getLength(); i++) {

 String child =n1.item(i).getNodeName();

 String after = child.substring(9);

 envelop.add(after);}

 FileManager.get().addLocatorClassLoader(Main.class.getClassLoader());

 Model model = FileManager.get().loadModel("E:\\xml research\\doctor\\ontology\\mah.owl");

 Reasoner reasoner = RDFSRuleReasonerFactory.theInstance().create(null);

 InfModel inf = ModelFactory.createInfModel(reasoner, model);

 String mem1 = ("PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" +

"PREFIX owl: <http://www.w3.org/2002/07/owl#>\n" +

"PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n" +

"PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>\n" +

"PREFIX SOAP: <http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#>\n" +

"SELECT ?a\n" +

" WHERE { SOAP:Envelope SOAP:ParentOf ?a.}");

 Query query = QueryFactory.create(mem1);

 QueryExecution agri = QueryExecutionFactory.create(query, inf);

 ResultSetRewindable results = ResultSetFactory.makeRewindable(agri.execSelect());

 while (results.hasNext()){

www.manaraa.com

99

QuerySolution qs = results.nextSolution();

RDFNode a1 = qs.get("a");

String[] b2 = a1.toString().split("\\^\\^http://www.w3.org/2001/XMLSchema#string");

s = b2[0].substring(65);

Ontenvelop.add(s);

}

 for (int i =0; i<=1; i++){

 String member = (String) Ontenvelop.get(i);

 if (envelop.contains(member)){

 } else {System.out.println("the element "+member+" is missing");}

 }

 System.out.println("Envelope mandatory elements are exist");

 }

 public static void headerChild() throws ParserConfigurationException, SAXException, IOException,

XPathExpressionException{

 DocumentBuilderFactory docBuilderFactory = DocumentBuilderFactory

 .newInstance();

 DocumentBuilder docBuilder = docBuilderFactory.newDocumentBuilder();

 Document document = docBuilder.parse(new File("xml.xml"));

 XPathFactory xPathfactory = XPathFactory.newInstance();

 XPath xpath = xPathfactory.newXPath();

 XPathExpression expr = xpath.compile("/Envelope/Header/*");

 Object result = expr.evaluate(document, XPathConstants.NODESET);

 NodeList n1 = (NodeList) result;

 for (int i = 0; i < n1.getLength(); i++) {

 String child =n1.item(i).getNodeName();

 String after = child.substring(9);

 header.add(after); }

 FileManager.get().addLocatorClassLoader(Main.class.getClassLoader());

 Model model = FileManager.get().loadModel("E:\\xml research\\doctor\\ontology\\mah.owl");

 Reasoner reasoner = RDFSRuleReasonerFactory.theInstance().create(null);

 InfModel inf = ModelFactory.createInfModel(reasoner, model);

 String mem1 = ("PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" +

"PREFIX owl: <http://www.w3.org/2002/07/owl#>\n" +

"PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n" +

"PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>\n" +

"PREFIX SOAP: <http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#>\n" +

"SELECT ?a\n" +

" WHERE { SOAP:Header SOAP:ParentOf ?a.}");

 Query query = QueryFactory.create(mem1);

 QueryExecution agri = QueryExecutionFactory.create(query, inf);

 ResultSetRewindable results = ResultSetFactory.makeRewindable(agri.execSelect());

while (results.hasNext()){

QuerySolution qs = results.nextSolution();

RDFNode a1 = qs.get("a");

String[] b2 = a1.toString().split("\\^\\^http://www.w3.org/2001/XMLSchema#string");

s = b2[0].substring(65);

//System.out.println(b2[0].substring(65));

OntHeader.add(s);

 }

 for (int i =0; i<=2; i++){

 String member = (String) OntHeader.get(i);

 if (header.contains(member)){

 } else {System.out.println("the element "+member+" is missing");} }

 System.out.println("All header mandatory element are exist"); }

www.manaraa.com

100

 public static void TimeChild() throws ParserConfigurationException, SAXException, IOException,

XPathExpressionException{

 DocumentBuilderFactory docBuilderFactory = DocumentBuilderFactory

 .newInstance();

 DocumentBuilder docBuilder = docBuilderFactory.newDocumentBuilder();

 Document document = docBuilder.parse(new File("xml.xml"));

 XPathFactory xPathfactory = XPathFactory.newInstance();

 XPath xpath = xPathfactory.newXPath();

 XPathExpression expr = xpath.compile("/Envelope/Header/TimeStamp/*");

 Object result = expr.evaluate(document, XPathConstants.NODESET);

 NodeList n1 = (NodeList) result;

 for (int i = 0; i < n1.getLength(); i++) {

 String child =n1.item(i).getNodeName();

 String after = child.substring(9);

 TimeStamp.add(after); }

 FileManager.get().addLocatorClassLoader(Main.class.getClassLoader());

 Model model = FileManager.get().loadModel("E:\\xml research\\doctor\\ontology\\mah.owl");

 Reasoner reasoner = RDFSRuleReasonerFactory.theInstance().create(null);

 InfModel inf = ModelFactory.createInfModel(reasoner, model);

 String mem1 = ("PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" +

"PREFIX owl: <http://www.w3.org/2002/07/owl#>\n" +

"PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n" +

"PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>\n" +

"PREFIX SOAP: <http://www.semanticweb.org/mahmoudhamouda/ontologies/2015/10/mah#>\n" +

"SELECT ?a\n" + " WHERE { SOAP:TimeStamp SOAP:ParentOf ?a.}");

 Query query = QueryFactory.create(mem1);

 QueryExecution agri = QueryExecutionFactory.create(query, inf);

 ResultSetRewindable results = ResultSetFactory.makeRewindable(agri.execSelect());

while (results.hasNext()){

QuerySolution qs = results.nextSolution();

RDFNode a1 = qs.get("a");

String[] b2 = a1.toString().split("\\^\\^http://www.w3.org/2001/XMLSchema#string");

s = b2[0].substring(65);

OntTime.add(s); }

 for (int i =0; i<=1; i++){

 String member = (String) OntTime.get(i);

 if (TimeStamp.contains(member)){

 } else {System.out.println("the element "+member+" is missing");} }

 System.out.println("TimeStamp mandatory elements are exist"); }

 public static void main (String [] args) throws ParserConfigurationException, SAXException,

 IOException, XPathExpressionException{

 System.out.println();

 getAll();

 System.out.println();

 envelopChild();

 System.out.println();

 headerChild();

 System.out.println();

 TimeChild();}}

